Jan Friebertshauser, Florian Kosterhon, Jiska Classen, Matthias Hollick (Secure Mobile Networking Lab, TU Darmstad)

Embedded systems, IoT devices, and systems on a chip such as wireless network cards often run raw firmware binaries. Raw binaries miss metadata such as the target architecture and an entry point. Thus, their analysis is challenging. Nonetheless, chip firmware analysis is vital to the security of modern devices. We find that state-of-the-art disassemblers fail to identify function starts and signatures in raw binaries. In our case, these issues originate from the dense, variable-length ARM Thumb2 instruction set. Binary differs such as BinDiff and Diaphora perform poor on raw ARM binaries, since they depend on correctly identified functions. Moreover, binary patchers like NexMon require function signatures to pass arguments. As a solution for fast diffing and function identification, we design and implement Polypyus. This firmware historian learns from binaries with known functions, generalizes this knowledge, and applies it to raw binaries. Polypyus is independent from architecture and disassembler. However, the results can be imported as disassembler entry points, thereby improving function identification and follow-up results by other binary differs. Additionally, we partially reconstruct function signatures and custom types from Eclipse PDOM files. Each Eclipse project contains a PDOM file, which caches selected project information for compiler optimization. We showcase the capabilities of Polypyus on a set of 20 firmware binaries.

View More Papers

Understanding the Growth and Security Considerations of ECS

Athanasios Kountouras (Georgia Institute of Technology), Panagiotis Kintis (Georgia Institute of Technology), Athanasios Avgetidis (Georgia Institute of Technology), Thomas Papastergiou (Georgia Institute of Technology), Charles Lever (Georgia Institute of Technology), Michalis Polychronakis (Stony Brook University), Manos Antonakakis (Georgia Institute of Technology)

Read More

User Expectations and Understanding of Encrypted DNS Settings

Alexandra Nisenoff, Nick Feamster, Madeleine A Hoofnagle†, Sydney Zink. (University of Chicago and †Northwestern)

Read More

Time-Based CAN Intrusion Detection Benchmark

Deborah Blevins (University of Kentucky), Pablo Moriano, Robert Bridges, Miki Verma, Michael Iannacone, and Samuel Hollifield (Oak Ridge National Laboratory)

Read More

Obfuscated Access and Search Patterns in Searchable Encryption

Zhiwei Shang (University of Waterloo), Simon Oya (University of Waterloo), Andreas Peter (University of Twente), Florian Kerschbaum (University of Waterloo)

Read More