Laura Matzen, Michelle A Leger, Geoffrey Reedy (Sandia National Laboratories)

Binary reverse engineers combine automated and manual techniques to answer questions about software. However, when evaluating automated analysis results, they rarely have additional information to help them contextualize these results in the binary. We expect that humans could more readily understand the binary program and these analysis results if they had access to information usually kept internal to the analysis, like value-set analysis (VSA) information. However, these automated analyses often give up precision for scalability, and imprecise information might hinder human decision making.

To assess how precision of VSA information affects human analysts, we designed a human study in which reverse engineers answered short information flow problems, determining whether code snippets would print sensitive information. We hypothesized that precise VSA information would help our participants analyze code faster and more accurately, and that imprecise VSA information would lead to slower, less accurate performance than no VSA information. We presented hand-crafted code snippets with precise, imprecise, or no VSA information in a blocked design, recording participants’ eye movements, response times, and accuracy while they analyzed the snippets. Our data showed that precise VSA information changed participants’ problem-solving strategies and supported faster, more accurate analyses. However, surprisingly, imprecise VSA information also led to increased accuracy relative to no VSA information, likely due to the extra time participants spent working through the code.

View More Papers

From WHOIS to WHOWAS: A Large-Scale Measurement Study of...

Chaoyi Lu (Tsinghua University; Beijing National Research Center for Information Science and Technology), Baojun Liu (Tsinghua University; Beijing National Research Center for Information Science and Technology; Qi An Xin Group), Yiming Zhang (Tsinghua University; Beijing National Research Center for Information Science and Technology), Zhou Li (University of California, Irvine), Fenglu Zhang (Tsinghua University), Haixin Duan…

Read More

V2X Security: Status and Open Challenges

Jonathan Petit (Director Of Engineering at Qualcomm Technologies) Dr. Jonathan Petit is Director of Engineering at Qualcomm Technologies, Inc., where he leads research in security of connected and automated vehicles (CAV). His team works on designing security solutions, but also develops tools for automotive penetration testing and builds prototypes. His recent work on misbehavior protection…

Read More

Symbolic Path Tracing to Find Android Permission-Use Triggers

Kristopher Micinski (Haverford College), Thomas Gilray (University of Alabama, Birmingham), Daniel Votipka (University of Maryland), Michelle L. Mazurek (University of Maryland), Jeffrey S. Foster (Tufts University)

Read More

icLibFuzzer: Isolated-context libFuzzer for Improving Fuzzer Comparability

Yu-Chuan Liang, Hsu-Chun Hsiao (National Taiwan University)

Read More