Elijah Bouma-Sims, Bradley Reaves (North Carolina State University)

YouTube has become the second most popular website according to Alexa, and it represents an enticing platform for scammers to attract victims. Because of the computational difficulty of classifying multimedia, identifying scams on YouTube is more difficult than text-based media. As a consequence, the research community to-date has provided little insight into the prevalence, lifetime, and operational patterns of scammers on YouTube. In this short paper, we present a preliminary exploration of scam videos on YouTube. We begin by identifying 74 search queries likely to lead to scam videos based on the authors’ experience seeing scams during routine browsing. We then manually review and characterize the results to identify 668 scams in 3,700 videos. In a detailed analysis of our classifications and metadata, we find that these scam videos have a median lifetime of nearly nine months, and many rely on external websites for monetization. We also explore the potential of detecting scams from metadata alone, finding that metadata does not have enough predictive power to distinguish scams from legitimate videos. Our work demonstrates that scams are a real problem for YouTube users, motivating future work on this topic.

View More Papers

Sn4ke: Practical Mutation Analysis of Tests at Binary Level

Mohsen Ahmadi (Arizona State University), Pantea Kiaei (Worcester Polytechnic Institute), Navid Emamdoost (University of Minnesota)

Read More

WATSON: Abstracting Behaviors from Audit Logs via Aggregation of...

Jun Zeng (National University of Singapore), Zheng Leong Chua (Independent Researcher), Yinfang Chen (National University of Singapore), Kaihang Ji (National University of Singapore), Zhenkai Liang (National University of Singapore), Jian Mao (Beihang University)

Read More

Shadow Attacks: Hiding and Replacing Content in Signed PDFs

Christian Mainka (Ruhr University Bochum), Vladislav Mladenov (Ruhr University Bochum), Simon Rohlmann (Ruhr University Bochum)

Read More

DeFiIntel: A Dataset Bridging On-Chain and Off-Chain Data for...

Iori Suzuki (Graduate School of Environment and Information Sciences, Yokohama National University), Yin Minn Pa Pa (Institute of Advanced Sciences, Yokohama National University), Nguyen Thi Van Anh (Institute of Advanced Sciences, Yokohama National University), Katsunari Yoshioka (Graduate School of Environment and Information Sciences, Yokohama National University)

Read More