Sayak Saha Roy, Unique Karanjit, Shirin Nilizadeh (The University of Texas at Arlington)

Twitter maintains a blackbox approach for detecting malicious URLs shared on its platform. In this study, we evaluate the efficiency of their detection mechanism against newer phishing and drive-by download threats posted on the website over three different time periods of the year. Our findings indicate that several threats remained undetected by Twitter, with the majority of them originating from nine different free website hosting services. These URLs targeted 19 popular organizations and also distributed malicious files from 9 different threat categories. Moreover, the malicious websites hosted under these services were also less likely to get detected by URL scanning tools than other similar threats hosted elsewhere, and were accessible on their respective domains for a much longer duration. We believe that the aforementioned features, combined with the ease of access (drag and drop website creating interface, up-to-date SSL certification, reputed domain, etc.) provides attackers a fast and convenient way to create malicious attacks using these services. On the other hand, we also observed that the majority of the URLs which were actually detected by Twitter remained active on the platform throughout our study, allowing them to be easily distributed across the platform. Also, several benign websites in our dataset were detected by Twitter as being malicious. We hypothesize that this is caused due to a blocklisting procedure used by Twitter, which detects all URLs originating from certain domains, irrespective of their content. Thus, our results identify a family of potent threats, which are distributed freely on Twitter, and are also not detected by the majority of URL scanning tools, or even the services which host them, thus making the need for a more thorough URL blocking approach from Twitter’s end more apparent.

View More Papers

Detecting Kernel Memory Leaks in Specialized Modules with Ownership...

Navid Emamdoost (University of Minnesota), Qiushi Wu (University of Minnesota), Kangjie Lu (University of Minnesota), Stephen McCamant (University of Minnesota)

Read More

Your Phone is My Proxy: Detecting and Understanding Mobile...

Xianghang Mi (University at Buffalo), Siyuan Tang (Indiana University Bloomington), Zhengyi Li (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington), Feng Qian (University of Minnesota Twin Cities), XiaoFeng Wang (Indiana University Bloomington)

Read More

Improving Signal's Sealed Sender

Ian Martiny (University of Colorado Boulder), Gabriel Kaptchuk (Boston University), Adam Aviv (The George Washington University), Dan Roche (U.S. Naval Avademy), Eric Wustrow (University of Colorado Boulder)

Read More

LaKSA: A Probabilistic Proof-of-Stake Protocol

Daniel Reijsbergen (Singapore University of Technology and Design), Pawel Szalachowski (Singapore University of Technology and Design), Junming Ke (University of Tartu), Zengpeng Li (Singapore University of Technology and Design), Jianying Zhou (Singapore University of Technology and Design)

Read More