Tongwei Ren (Worcester Polytechnic Institute), Alexander Wittmany (University of Kansas), Lorenzo De Carli (Worcester Polytechnic Institute), Drew Davidsony (University of Kansas)

DNS CNAME redirections, which can “steer” browser requests towards a domain different than the one in the request’s URI, are a simple and oftentimes effective means to obscure the source of a web object behind an alias. These redirections can be used to make third-party content appear as first-party content. The practice of evading browser security mechanisms through misuse of CNAMEs, referred to as CNAME cloaking, has been recently growing in popularity among advertisers/trackers to bypass blocklists and privacy policies.

While CNAME cloaking has been reported in past measurement studies, its impact on browser cookie policies has not been analyzed. We close this gap by presenting an in-depth characterization of how CNAME redirections affect cookie propagation. Our analysis uses two distinct data collection samples (June and December 2020). Beyond confirming that CNAME cloaking continues to be popular, our analysis identifies a number of websites transmitting sensitive cookies to cloaked third-parties, thus breaking browser cookie policies. Manual review of such cases identifies exfiltration of authentication cookies to advertising/tracking domains, which raises serious security concerns.

View More Papers

Differential Training: A Generic Framework to Reduce Label Noises...

Jiayun Xu (Singapore Management University), Yingjiu Li (University of Oregon), Robert H. Deng (Singapore Management University)

Read More

PrivacyFlash Pro: Automating Privacy Policy Generation for Mobile Apps

Sebastian Zimmeck (Wesleyan University), Rafael Goldstein (Wesleyan University), David Baraka (Wesleyan University)

Read More

Towards Defeating Mass Surveillance and SARS-CoV-2: The Pronto-C2 Fully...

Gennaro Avitabile, Vincenzo Botta, Vincenzo Iovino, and Ivan Visconti (University of Salerno)

Read More

Your Phone is My Proxy: Detecting and Understanding Mobile...

Xianghang Mi (University at Buffalo), Siyuan Tang (Indiana University Bloomington), Zhengyi Li (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington), Feng Qian (University of Minnesota Twin Cities), XiaoFeng Wang (Indiana University Bloomington)

Read More