Christopher Bennett, AbdelRahman Abdou, and Paul C. van Oorschot (School of Computer Science, Carleton University, Canada)

Engines that scan Internet-connected devices allow for fast retrieval of useful information regarding said devices, and their running services. Examples of such engines include Censys and Shodan. We present a snapshot of our in-progress effort towards the characterization and systematic evaluation of such engines, herein focusing on results obtained from an empirical study that sheds light on several aspects. These include: the freshness of a result obtained from querying Censys and Shodan, the resources they consume from the scanned devices, and several interesting operational differences between engines observed from the network edge. Preliminary results confirm that the information retrieved from both engines can reflect updates within 24 hours, which aligns with implicit usage expectations in recent literature. The results also suggest that the consumed resources appear insignificant for common Internet applications, e.g., one full application-layer connection (banner grab) per port, per day. Results so far highlight the value of such engines to the research community

View More Papers

Measuring the Impact of HTTP/2 and Server Push on...

Weiran Lin, Sanjeev Reddy, Nikita Borisov

Read More

Work-in-Progress: A Large-Scale Long-term Analysis of Online Fraud across...

Yi Han, Shujiang Wu, Mengmeng Li, Zixi Wang, and Pengfei Sun (F5)

Read More

Demo #2: Sequential Attacks on Kalman Filter-Based Forward Collision...

Yuzhe Ma, Jon Sharp, Ruizhe Wang, Earlence Fernandes, and Jerry Zhu (University of Wisconsin–Madison)

Read More

POSEIDON: Privacy-Preserving Federated Neural Network Learning

Sinem Sav (EPFL), Apostolos Pyrgelis (EPFL), Juan Ramón Troncoso-Pastoriza (EPFL), David Froelicher (EPFL), Jean-Philippe Bossuat (EPFL), Joao Sa Sousa (EPFL), Jean-Pierre Hubaux (EPFL)

Read More