Emily Stark

Over the past decade, HTTPS adoption has risen dramatically. The Web PKI has shifted seismically, with browsers imposing new requirements on CAs and server operators. These shifts bring security and privacy improvements for end users, but they have often been driven by incompatible browser changes that break websites, causing frustration for end users as well as server operators. Security-positive breaking changes involve a plethora of choices. Should browsers roll out a change gradually, or rip the band-aid off and deploy it all at once? How do we advertise the change and motivate different players in the ecosystem to update configurations before they break? How do different types and amounts of breakage affect the user experience? And the meta-question: how do we approach such quandaries scientifically? Drawing from several case studies in the HTTPS ecosystem, I'll talk about the science of nudging an ecosystem: methods that the web browser community has developed, and lessons we've learned, for measuring how best to get millions of websites to improve security while minimizing the frustrations of incompatibility.

View More Papers

Denial-of-Service Attacks on C-V2X Networks

Natasa Trkulja, David Starobinski (Boston University), and Randall Berry (Northwestern University)

Read More

PrivacyFlash Pro: Automating Privacy Policy Generation for Mobile Apps

Sebastian Zimmeck (Wesleyan University), Rafael Goldstein (Wesleyan University), David Baraka (Wesleyan University)

Read More

Work-in-Progress: Manifest V3 Unveiled: Navigating the New Era of...

Nikolaos Pantelaios and Alexandros Kapravelos (North Carolina State University)

Read More

Analysis of the Effect of the Difference between Japanese...

Rei Yamagishi, Shinya Sasa, and Shota Fujii (Hitachi, Ltd.)

Read More