Liang Wang, Hyojoon Kim, Prateek Mittal, Jennifer Rexford (Princeton University)

In conventional DNS, or Do53, requests and responses are sent in cleartext. Thus, DNS recursive resolvers or any on-path adversaries can access privacy-sensitive information. To address this issue, several encryption-based approaches (e.g., DNS-over-HTTPS) and proxy-based approaches (e.g., Oblivious DNS) were proposed. However, encryption-based approaches put too much trust in recursive resolvers. Proxy-based approaches can help hide the client’s identity, but sets a higher deployment barrier while also introducing noticeable performance overhead. We propose PINOT, a packet-header obfuscation system that runs entirely in the data plane of a programmable network switch, which provides a lightweight, low-deployment-barrier anonymization service for clients sending and receiving DNS packets. PINOT does not require any modification to the DNS protocol or additional client software installation or proxy setup. Yet, it can also be combined with existing approaches to provide stronger privacy guarantees. We implement a PINOT prototype on a commodity switch, deploy it in a campus network, and present results on protecting user identity against public DNS services.

View More Papers

On Building the Data-Oblivious Virtual Environment

Tushar Jois (Johns Hopkins University), Hyun Bin Lee, Christopher Fletcher, Carl A. Gunter (University of Illinois at Urbana-Champaign)

Read More

Reining in the Web's Inconsistencies with Site Policy

Stefano Calzavara (Università Ca' Foscari Venezia), Tobias Urban (Institute for Internet Security and Ruhr University Bochum), Dennis Tatang (Ruhr University Bochum), Marius Steffens (CISPA Helmholtz Center for Information Security), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More

Empirical Scanning Analysis of Censys and Shodan

Christopher Bennett, AbdelRahman Abdou, and Paul C. van Oorschot (School of Computer Science, Carleton University, Canada)

Read More

Taking a Closer Look at the Alexa Skill Ecosystem

Christopher Lentzsch (Ruhr-Universität Bochum), Anupam Das (North Carolina State University)

Read More