Anas Alsoliman, Marco Levorato, and Qi Alfred Chen (UC Irvine)

In autonomous vehicle systems – whether ground or aerial – vehicles and infrastructure-level units communicate among each other continually to ensure safe and efficient autonomous operations. However, different attack scenarios might arise in such environments when a device in the network cannot physically pinpoint the actual transmitter of a certain message. For example, a compromised or a malicious vehicle could send a message with a fabricated location to appear as if it is in the location of another legitimate vehicle, or fabricate multiple messages with fake identities to alter the behavior of other vehicles/infrastructure units and cause traffic congestion or accidents. In this paper, we propose a Vision-Based Two-Factor Authentication and Localization Scheme for Autonomous Vehicles. The scheme leverages the vehicles’ light sources and cameras to establish an “Optical Camera Communication (OCC)” channel providing an auxiliary channel between vehicles to visually authenticate and localize the transmitter of messages that are sent over Radio Frequency (RF) channels. Additionally, we identify possible attacks against the proposed scheme as well as mitigation strategies.

View More Papers

POSEIDON: Privacy-Preserving Federated Neural Network Learning

Sinem Sav (EPFL), Apostolos Pyrgelis (EPFL), Juan Ramón Troncoso-Pastoriza (EPFL), David Froelicher (EPFL), Jean-Philippe Bossuat (EPFL), Joao Sa Sousa (EPFL), Jean-Pierre Hubaux (EPFL)

Read More

Manipulating the Byzantine: Optimizing Model Poisoning Attacks and Defenses...

Virat Shejwalkar (UMass Amherst), Amir Houmansadr (UMass Amherst)

Read More

Demo #3: I Am Not Afraid of the GPS...

Ali A. Abdallah (UC Irvine), Zaher M. Kassas (UC Irvine) and Chiawei Lee (US Air Force Test Pilot School)

Read More

HERA: Hotpatching of Embedded Real-time Applications

Christian Niesler (University of Duisburg-Essen), Sebastian Surminski (University of Duisburg-Essen), Lucas Davi (University of Duisburg-Essen)

Read More