Shihong Huang (University of Michigan, Ann Arbor), Yiheng Feng (Purdue University), Wai Wong (University of Michigan, Ann Arbor), Qi Alfred Chen (UC Irvine), Z. Morley Mao and Henry X. Liu (University of Michigan, Ann Arbor)

Best Paper Award Runner-up ($200 cash prize)!

Connected vehicle (CV) technologies enable data exchange between vehicles and transportation infrastructure. In a CV environment, traffic signal control systems receive CV trajectory data through vehicle-to-infrastructure (V2I) communications to make control decisions. Comparing with existing data collection methods (e.g., from loop-detectors), the CV trajectory data provide much richer information, and therefore have great potentials to improve the system performance by reducing total vehicle delay at signalized intersections. However, this connectivity might also bring cyber security concerns.

In this paper, we aim to investigate the security problem of CV-based traffic signal control (CV-TSC) systems. Specifically, we focus on evaluating the impact of falsified data attacks on the system performance. A black-box attack scenario, in which the control logic of a CV-TSC system is unavailable to attackers, is considered. A two-step attack model is constructed. In the first step, the attacker tries to learn the control logic using a surrogate model. Based on the surrogate model, in the second step, the attacker launches falsified data attacks to influence the control systems to make sub-optimal control decisions. In the case study, we apply the attack model to an existing CV-TSC system (i.e., I-SIG) and find intersection delay can be significantly increased. Finally, we discuss some promising defense directions.

View More Papers

WATSON: Abstracting Behaviors from Audit Logs via Aggregation of...

Jun Zeng (National University of Singapore), Zheng Leong Chua (Independent Researcher), Yinfang Chen (National University of Singapore), Kaihang Ji (National University of Singapore), Zhenkai Liang (National University of Singapore), Jian Mao (Beihang University)

Read More

Measuring DoT/DoH Blocking Using OONI Probe: a Preliminary Study

S. Basso (Open Observatory of Network Interference)

Read More

DRIVETRUTH: Automated Autonomous Driving Dataset Generation for Security Applications

Raymond Muller (Purdue University), Yanmao Man (University of Arizona), Z. Berkay Celik (Purdue University), Ming Li (University of Arizona) and Ryan Gerdes (Virginia Tech)

Read More