Kanglan Tang, Junjie Shen, and Qi Alfred Chen (UC Irvine)

The perception module is the key to the security of Autonomous Driving systems. It perceives the environment through sensors to help make safe and correct driving decisions on the road. The localization module is usually considered to be independent of the perception module. However, we discover that the correctness of perception output highly depends on localization due to the widely used Region-of-Interest design adopted in perception. Leveraging this insight, we propose an ROI attack and perform a case study in the traffic light detection in Autonomous Driving systems. We evaluate the ROI attack on a production-grade Autonomous Driving system, named Baidu Apollo, under end-to-end simulation environments. We found our attack is able to make the victim a red light runner or cause denial-of-service with a 100% success rate.

View More Papers

Mondrian: Comprehensive Inter-domain Network Zoning Architecture

Jonghoon Kwon (ETH Zürich), Claude Hähni (ETH Zürich), Patrick Bamert (Zürcher Kantonalbank), Adrian Perrig (ETH Zürich)

Read More

Does Every Second Count? Time-based Evolution of Malware Behavior...

Alexander Küchler (Fraunhofer AISEC), Alessandro Mantovani (EURECOM), Yufei Han (NortonLifeLock Research Group), Leyla Bilge (NortonLifeLock Research Group), Davide Balzarotti (EURECOM)

Read More

WeepingCAN: A Stealthy CAN Bus-off Attack

Gedare Bloom (University of Colorado Colorado Springs) Best Paper Award Winner ($300 cash prize)!

Read More

Location Data and COVID-19 Contact Tracing: How Data Privacy...

Callie Monroe, Faiza Tazi, Sanchari Das (university of Denver)

Read More