Zhongyuan Hau, Kenneth Co, Soteris Demetriou, and Emil Lupu (Imperial College London)

Best Short Paper Award Runner-up!

LiDARs play a critical role in Autonomous Vehicles’ (AVs) perception and their safe operations. Recent works have demonstrated that it is possible to spoof LiDAR return signals to elicit fake objects. In this work we demonstrate how the same physical capabilities can be used to mount a new, even more dangerous class of attacks, namely Object Removal Attacks (ORAs). ORAs aim to force 3D object detectors to fail. We leverage the default setting of LiDARs that record a single return signal per direction to perturb point clouds in the region of interest (RoI) of 3D objects. By injecting illegitimate points behind the target object, we effectively shift points away from the target objects’ RoIs. Our initial results using a simple random point selection strategy show that the attack is effective in degrading the performance of commonly used 3D object detection models.

View More Papers

Raising Trust in the Food Supply Chain

Alexander Krumpholz, Marthie Grobler, Raj Gaire, Claire Mason, Shanae Burns (CSIRO Data61)

Read More

SODA: A Generic Online Detection Framework for Smart Contracts

Ting Chen (University of Electronic Science and Technology of China), Rong Cao (University of Electronic Science and Technology of China), Ting Li (University of Electronic Science and Technology of China), Xiapu Luo (The Hong Kong Polytechnic University), Guofei Gu (Texas A&M University), Yufei Zhang (University of Electronic Science and Technology of China), Zhou Liao (University…

Read More

Demo #3: Detecting Illicit Drone Video Filming Using Cryptanalysis

Ben Nassi, Raz Ben-Netanel (Ben-Gurion University of the Negev), Adi Shamir (Weizmann Institute of Science), and Yuval Elovic (Ben-Gurion University of the Negev)

Read More

MUVIDS: False MAVLink Injection Attack Detection in Communication for...

Seonghoon Jeong, Eunji Park, Kang Uk Seo, Jeong Do Yoo, and Huy Kang Kim (Korea University)

Read More