Gedare Bloom (University of Colorado Colorado Springs)

Best Paper Award Winner ($300 cash prize)!

The controller area network (CAN) is a high-value asset to defend and attack in automobiles. The bus-off attack exploits CAN’s fault confinement to force a victim electronic control unit (ECU) into the bus-off state, which prevents it from using the bus. Although pernicious, the bus-off attack has two distinct phases that are observable on the bus and allow the attack to be detected and prevented. In this paper we present WeepingCAN, a refinement of the bus-off attack that is stealthy and can escape detection. We evaluate WeepingCAN experimentally using realistic CAN benchmarks and find it succeeds in over 75% of attempts without exhibiting the detectable features of the original attack. We demonstrate WeepingCAN on a real vehicle.

View More Papers

icLibFuzzer: Isolated-context libFuzzer for Improving Fuzzer Comparability

Yu-Chuan Liang, Hsu-Chun Hsiao (National Taiwan University)

Read More

A Framework for Consistent and Repeatable Controller Area Network...

Paul Agbaje (University of Texas at Arlington), Afia Anjum (University of Texas at Arlington), Arkajyoti Mitra (University of Texas at Arlington), Gedare Bloom (University of Colorado Colorado Springs) and Habeeb Olufowobi (University of Texas at Arlington)

Read More

Model-Agnostic Defense for Lane Detection against Adversarial Attack

Henry Xu, An Ju, and David Wagner (UC Berkeley) Baidu Security Auto-Driving Security Award Winner ($1000 cash prize)!

Read More