Sze Yiu Chau (Purdue University), Moosa Yahyazadeh (The University of Iowa), Omar Chowdhury (The University of Iowa), Aniket Kate (Purdue University), Ninghui Li (Purdue University)

We discuss how symbolic execution can be used to not only find low-level errors but also analyze the semantic correctness of protocol implementations. To avoid manually crafting test cases, we propose a strategy of meta-level search, which leverages constraints stemmed from the input formats to automatically generate concolic test cases. Additionally, to aid root-cause analysis, we develop constraint provenance tracking (CPT), a mechanism that associates atomic sub-formulas of path constraints with their corresponding source level origins. We demonstrate the power of symbolic analysis with a case study on PKCS#1 v1.5 signature verification. Leveraging meta-level search and CPT, we analyzed 15 recent open-source implementations using symbolic execution and found semantic flaws in 6 of them. Further analysis of these flaws showed that 4 implementations are susceptible to new variants of the Bleichenbacher low- exponent RSA signature forgery. One implementation suffers from potential denial of service attacks with purposefully crafted signatures. All our findings have been responsibly shared with the affected vendors. Among the flaws discovered, 6 new CVEs have been assigned to the immediately exploitable ones.

View More Papers

SABRE: Protecting Bitcoin against Routing Attacks

Maria Apostolaki (ETH Zurich), Gian Marti (ETH Zurich), Jan Müller (ETH Zurich), Laurent Vanbever (ETH Zurich)

Read More

Data Oblivious ISA Extensions for Side Channel-Resistant and High...

Jiyong Yu (UIUC), Lucas Hsiung (UIUC), Mohamad El'Hajj (UIUC), Christopher W. Fletcher (UIUC)

Read More

Nearby Threats: Reversing, Analyzing, and Attacking Google’s ‘Nearby Connections’...

Daniele Antonioli (Singapore University of Technology and Design (SUTD)), Nils Ole Tippenhauer (CISPA), Kasper Rasmussen (University of Oxford)

Read More

Cracking the Wall of Confinement: Understanding and Analyzing Malicious...

Eihal Alowaisheq (Indiana University, King Saud University), Peng Wang (Indiana University), Sumayah Alrwais (King Saud University), Xiaojing Liao (Indiana University), XiaoFeng Wang (Indiana University), Tasneem Alowaisheq (Indiana University, King Saud University), Xianghang Mi (Indiana University), Siyuan Tang (Indiana University), Baojun Liu (Tsinghua University)

Read More