Qi Xia (University of Texas at San Antonio), Qian Chen (University of Texas at San Antonio)

Traditional black-box adversarial attacks on computer vision models face significant limitations, including intensive querying requirements, time-consuming iterative processes, a lack of universality, and low attack success rates (ASR) and confidence levels (CL) due to subtle perturbations. This paper introduces AlphaDog, an Alpha channel attack, the first universally efficient targeted no-box attack, exploiting the often overlooked Alpha channel in RGBA images to create visual disparities between human perception and machine interpretation, efficiently deceiving both. Specifically, AlphaDog maliciously sets the RGB channels to represent the desired object for AI recognition, while crafting the Alpha channel to create a different perception for humans when blended with a standard or default background color of digital media (thumbnail or image viewer apps). Leveraging differences in how AI models and human vision process transparency, AlphaDog outperforms existing adversarial attacks in four key ways: (i) as a no-box attack, it requires zero queries; (ii) it achieves highly efficient generation, taking milliseconds to produce arbitrary attack images; (iii) AlphaDog can be universally applied, compromising most AI models with a single attack image; (iv) it guarantees 100% ASR and CL. The assessment of 6,500 AlphaDog attack examples across 100 state-of-the-art image recognition systems demonstrates AlphaDog's effectiveness, and an IRB-approved experiment involving 20 college-age participants validates AlphaDog's stealthiness. AlphaDog can be applied in data poisoning, evasion attacks, and content moderation. Additionally, a novel pixel-intensity histogram-based detection method is introduced to identify AlphaDog, achieving 100% effectiveness in detecting and protecting computer vision models against AlphaDog. Demos are available on the AlphaDog website (https://sites.google.com/view/alphachannelattack/home).

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 118 ) ) ) [post__not_in] => Array ( [0] => 20172 ) )

Reinforcement Unlearning

Dayong Ye (University of Technology Sydney), Tianqing Zhu (City University of Macau), Congcong Zhu (City University of Macau), Derui Wang (CSIRO’s Data61), Kun Gao (University of Technology Sydney), Zewei Shi (CSIRO’s Data61), Sheng Shen (Torrens University Australia), Wanlei Zhou (City University of Macau), Minhui Xue (CSIRO's Data61)

Read More

Fuzzing Space Communication Protocols

Stephan Havermans (IMDEA Software Institute), Lars Baumgaertner, Jussi Roberts, Marcus Wallum (European Space Agency), Juan Caballero (IMDEA Software Institute)

Read More

Target-Centric Firmware Rehosting with Penguin

Andrew Fasano, Zachary Estrada, Luke Craig, Ben Levy, Jordan McLeod, Jacques Becker, Elysia Witham, Cole DiLorenzo, Caden Kline, Ali Bobi (MIT Lincoln Laboratory), Dinko Dermendzhiev (Georgia Institute of Technology), Tim Leek (MIT Lincoln Laboratory), William Robertson (Northeastern University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)