Jairo Giraldo (University of Utah), Alvaro Cardenas (UC Santa Cruz), Murat Kantarcioglu (UT Dallas), Jonathan Katz (George Mason University)

Differential Privacy has emerged in the last decade as a powerful tool to protect sensitive information. Similarly, the last decade has seen a growing interest in adversarial classification, where an attacker knows a classifier is trying to detect anomalies and the adversary attempts to design examples meant to mislead this classification.

Differential privacy and adversarial classification have been studied separately in the past. In this paper, we study the problem of how a strategic attacker can leverage differential privacy to inject false data in a system, and then we propose countermeasures against these novel attacks. We show the impact of our attacks and defenses in a real-world traffic estimation system and in a smart metering system.

View More Papers

Measuring the Deployment of Network Censorship Filters at Global...

Ram Sundara Raman (University of Michigan), Adrian Stoll (University of Michigan), Jakub Dalek (Citizen Lab, University of Toronto), Reethika Ramesh (University of Michigan), Will Scott (Independent), Roya Ensafi (University of Michigan)

Read More

ABSynthe: Automatic Blackbox Side-channel Synthesis on Commodity Microarchitectures

Ben Gras (Vrije Universiteit Amsterdam, Intel Corporation), Cristiano Giuffrida (Vrije Universiteit Amsterdam), Michael Kurth (Vrije Universiteit Amsterdam), Herbert Bos (Vrije Universiteit Amsterdam), Kaveh Razavi (Vrije Universiteit Amsterdam)

Read More

Carnus: Exploring the Privacy Threats of Browser Extension Fingerprinting

Soroush Karami (University of Illinois at Chicago), Panagiotis Ilia (University of Illinois at Chicago), Konstantinos Solomos (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

Not All Coverage Measurements Are Equal: Fuzzing by Coverage...

Yanhao Wang (Institute of Software, Chinese Academy of Sciences), Xiangkun Jia (Pennsylvania State University), Yuwei Liu (Institute of Software, Chinese Academy of Sciences), Kyle Zeng (Arizona State University), Tiffany Bao (Arizona State University), Dinghao Wu (Pennsylvania State University), Purui Su (Institute of Software, Chinese Academy of Sciences)

Read More