Ge Ren (Shanghai Jiao Tong University), Gaolei Li (Shanghai Jiao Tong University), Shenghong Li (Shanghai Jiao Tong University), Libo Chen (Shanghai Jiao Tong University), Kui Ren (Zhejiang University)

Well-trained deep neural network (DNN) models can be treated as commodities for commercial transactions and generate significant revenues, raising the urgent need for intellectual property (IP) protection against illegitimate reproducing. Emerging studies on IP protection often aim at inserting watermarks into DNNs, allowing owners to passively verify the ownership of target models after counterfeit models appear and commercial benefits are infringed, while active authentication against unauthorized queries of DNN-based applications is still neglected. In this paper, we propose a novel approach to protect model intellectual property, called ActiveDaemon, which incorporates a built-in access control function in DNNs to safeguard against commercial piracy. Specifically, our approach enables DNNs to predict correct outputs only for authorized users with user-specific tokens while producing poor accuracy for unauthorized users. In ActiveDaemon, the user-specific tokens are generated by a specially designed U-Net style encoder-decoder network, which can map strings and input images into numerous noise images to address identity management with large-scale user capacity. Compared to existing studies, these user-specific tokens are invisible, dynamic and more perceptually concealed, enhancing the stealthiness and reliability of model IP protection. To automatically wake up the model accuracy, we utilize the data poisoning-based training technique to unconsciously embed the ActiveDaemon into the neuron's function. We conduct experiments to compare the protection performance of ActiveDaemon with four state-of-the-art approaches over four datasets. The experimental results show that ActiveDaemon can reduce the accuracy of unauthorized queries by as much as 81% with less than a 1.4% decrease in that of authorized queries. Meanwhile, our approach can also reduce the LPIPS scores of the authorized tokens to 0.0027 on CIFAR10 and 0.0368 on ImageNet.

View More Papers

From Hardware Fingerprint to Access Token: Enhancing the Authentication...

Yue Xiao (Wuhan University), Yi He (Tsinghua University), Xiaoli Zhang (Zhejiang University of Technology), Qian Wang (Wuhan University), Renjie Xie (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Qi Li (Tsinghua University)

Read More

BliMe: Verifiably Secure Outsourced Computation with Hardware-Enforced Taint Tracking

Hossam ElAtali (University of Waterloo), Lachlan J. Gunn (Aalto University), Hans Liljestrand (University of Waterloo), N. Asokan (University of Waterloo, Aalto University)

Read More

DeepGo: Predictive Directed Greybox Fuzzing

Peihong Lin (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Wei Xie (National University of Defense Technology), Gen Zhang (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More

Using Behavior Monitoring to Identify Privacy Concerns in Smarthome...

Atheer Almogbil, Momo Steele, Sofia Belikovetsky (Johns Hopkins University), Adil Inam (University of Illinois at Urbana-Champaign), Olivia Wu (Johns Hopkins University), Aviel Rubin (Johns Hopkins University), Adam Bates (University of Illinois at Urbana-Champaign)

Read More