Hexuan Yu (Virginia Polytechnic Institute and State University), Changlai Du (Virginia Polytechnic Institute and State University), Yang Xiao (University of Kentucky), Angelos Keromytis (Georgia Institute of Technology), Chonggang Wang (InterDigital), Robert Gazda (InterDigital), Y. Thomas Hou (Virginia Polytechnic Institute and State University), Wenjing Lou (Virginia Polytechnic Institute and State University)

Mobile tracking has long been a privacy problem, where the geographic data and timestamps gathered by mobile network operators (MNOs) are used to track the locations and movements of mobile subscribers. Additionally, selling the geolocation information of subscribers has become a lucrative business. Many mobile carriers have violated user privacy agreements by selling users' location history to third parties without user consent, exacerbating privacy issues related to mobile tracking and profiling. This paper presents AAKA, an anonymous authentication and key agreement scheme designed to protect against mobile tracking by honest-but-curious MNOs. AAKA leverages anonymous credentials and introduces a novel mobile authentication protocol that allows legitimate subscribers to access the network anonymously, without revealing their unique (real) IDs. It ensures the integrity of user credentials, preventing forgery, and ensures that connections made by the same user at different times cannot be linked. While the MNO alone cannot identify or profile a user, AAKA enables identification of a user under legal intervention, such as when the MNOs collaborate with an authorized law enforcement agency. Our design is compatible with the latest cellular architecture and SIM standardized by 3GPP, meeting 3GPP's fundamental security requirements for User Equipment (UE) authentication and key agreement processes. A comprehensive security analysis demonstrates the scheme's effectiveness. The evaluation shows that the scheme is practical, with a credential presentation generation taking ~52 ms on a constrained host device equipped with a standard cellular SIM.

View More Papers

Inaudible Adversarial Perturbation: Manipulating the Recognition of User Speech...

Xinfeng Li (Zhejiang University), Chen Yan (Zhejiang University), Xuancun Lu (Zhejiang University), Zihan Zeng (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

EMMasker: EM Obfuscation Against Website Fingerprinting

Mohammed Aldeen, Sisheng Liang, Zhenkai Zhang, Linke Guo (Clemson University), Zheng Song (University of Michigan – Dearborn), and Long Cheng (Clemson University)

Read More

EM Eye: Characterizing Electromagnetic Side-channel Eavesdropping on Embedded Cameras

Yan Long (University of Michigan), Qinhong Jiang (Zhejiang University), Chen Yan (Zhejiang University), Tobias Alam (University of Michigan), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University), Kevin Fu (Northeastern University)

Read More

Faster and Better: Detecting Vulnerabilities in Linux-based IoT Firmware...

Zicong Gao (State Key Laboratory of Mathematical Engineering and Advanced Computing), Chao Zhang (Tsinghua University), Hangtian Liu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Wenhou Sun (Tsinghua University), Zhizhuo Tang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Liehui Jiang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Jianjun Chen (Tsinghua…

Read More