Matthew Smith (University of Oxford), Martin Strohmeier (University of Oxford), Jonathan Harman (Vrije Universiteit Amsterdam), Vincent Lenders (armasuisse Science and Technology), Ivan Martinovic (University of Oxford)

Many wireless communications systems found in aircraft lack standard security mechanisms, leaving them fundamentally vulnerable to attack. With affordable software-defined radios available, a novel threat has emerged, allowing a wide range of attackers to easily interfere with wireless avionic systems. Whilst these vulnerabilities are known, concrete attacks that exploit them are still novel and not yet well understood. This is true in particular with regards to their kinetic impact on the handling of the attacked aircraft and consequently its safety. To investigate this, we invited 30 Airbus A320 type-rated pilots to fly simulator scenarios in which they were subjected to attacks on their avionics. We implement and analyze novel wireless attacks on three safety-related systems: Traffic Collision Avoidance System (TCAS), Ground Proximity Warning System (GPWS) and the Instrument Landing System (ILS). We found that all three analyzed attack scenarios created significant control impact and cost of disruption through turnarounds, avoidance manoeuvres, and diversions. They further increased workload, distrust in the affected system, and in 38% of cases caused the attacked safety system to be switched off entirely. All pilots felt the scenarios were useful, with 93.3% feeling that specific simulator training for wireless attacks could be valuable.

View More Papers

Learning-based Practical Smartphone Eavesdropping with Built-in Accelerometer

Zhongjie Ba (Zhejiang University and McGill University), Tianhang Zheng (University of Toronto), Xinyu Zhang (Zhejiang University), Zhan Qin (Zhejiang University), Baochun Li (University of Toronto), Xue Liu (McGill University), Kui Ren (Zhejiang University)

Read More

HotFuzz: Discovering Algorithmic Denial-of-Service Vulnerabilities Through Guided Micro-Fuzzing

William Blair (Boston University), Andrea Mambretti (Northeastern University), Sajjad Arshad (Northeastern University), Michael Weissbacher (Northeastern University), William Robertson (Northeastern University), Engin Kirda (Northeastern University), Manuel Egele (Boston University)

Read More

DeepBinDiff: Learning Program-Wide Code Representations for Binary Diffing

Yue Duan (Cornell University), Xuezixiang Li (UC Riverside), Jinghan Wang (UC Riverside), Heng Yin (UC Riverside)

Read More

Not All Coverage Measurements Are Equal: Fuzzing by Coverage...

Yanhao Wang (Institute of Software, Chinese Academy of Sciences), Xiangkun Jia (Pennsylvania State University), Yuwei Liu (Institute of Software, Chinese Academy of Sciences), Kyle Zeng (Arizona State University), Tiffany Bao (Arizona State University), Dinghao Wu (Pennsylvania State University), Purui Su (Institute of Software, Chinese Academy of Sciences)

Read More