Victor Le Pochat (imec-DistriNet, KU Leuven), Tim Van hamme (imec-DistriNet, KU Leuven), Sourena Maroofi (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Tom Van Goethem (imec-DistriNet, KU Leuven), Davy Preuveneers (imec-DistriNet, KU Leuven), Andrzej Duda (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Wouter Joosen (imec-DistriNet, KU Leuven), Maciej Korczyński (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG)

In 2016, law enforcement dismantled the infrastructure of the Avalanche bulletproof hosting service, the largest takedown of a cybercrime operation so far. The malware families supported by Avalanche use Domain Generation Algorithms (DGAs) to generate random domain names for controlling their botnets. The takedown proactively targets these presumably malicious domains; however, as coincidental collisions with legitimate domains are possible, investigators must first classify domains to prevent undesirable harm to website owners and botnet victims.

The constraints of this real-world takedown (proactive decisions without access to malware activity, no bulk patterns and no active connections) mean that approaches from the state of the art cannot be applied. The problem of classifying thousands of registered DGA domain names therefore required an extensive, painstaking manual effort by law enforcement investigators. To significantly reduce this effort without compromising correctness, we develop a model that automates the classification. Through a synergetic approach, we achieve an accuracy of 97.6% with ground truth from the 2017 and 2018 Avalanche takedowns; for the 2019 takedown, this translates into a reduction of 76.9% in manual investigation effort. Furthermore, we interpret the model to provide investigators with insights into how benign and malicious domains differ in behavior, which features and data sources are most important, and how the model can be applied according to the practical requirements of a real-world takedown.

View More Papers

You Are What You Do: Hunting Stealthy Malware via...

Qi Wang (University of Illinois Urbana-Champaign), Wajih Ul Hassan (University of Illinois Urbana-Champaign), Ding Li (NEC Laboratories America, Inc.), Kangkook Jee (University of Texas at Dallas), Xiao Yu (NEC Laboratories America, Inc.), Kexuan Zou (University Of Illinois Urbana-Champaign), Junghwan Rhee (NEC Laboratories America, Inc.), Zhengzhang Chen (NEC Laboratories America, Inc.), Wei Cheng (NEC Laboratories America,…

Read More

Secure Sublinear Time Differentially Private Median Computation

Jonas Böhler (SAP Security Research), Florian Kerschbaum (University of Waterloo)

Read More

Unicorn: Runtime Provenance-Based Detector for Advanced Persistent Threats

Xueyuan Han (Harvard University), Thomas Pasquier (University of Bristol), Adam Bates (University of Illinois at Urbana-Champaign), James Mickens (Harvard University), Margo Seltzer (University of British Columbia)

Read More

HYPER-CUBE: High-Dimensional Hypervisor Fuzzing

Sergej Schumilo (Ruhr-Universität Bochum), Cornelius Aschermann (Ruhr-Universität Bochum), Ali Abbasi (Ruhr-Universität Bochum), Simon Wörner (Ruhr-Universität Bochum), Thorsten Holz (Ruhr-Universität Bochum)

Read More