Ganxiang Yang (Shanghai Jiao Tong University), Chenyang Liu (Shanghai Jiao Tong University), Zhen Huang (Shanghai Jiao Tong University), Guoxing Chen (Shanghai Jiao Tong University), Hongfei Fu (Shanghai Jiao Tong University), Yuanyuan Zhang (Shanghai Jiao Tong University), Haojin Zhu (Shanghai Jiao Tong University)

Trusted Execution Environments (TEE) have been widely adopted as a protection approach for security-critical applications. Although feature extensions have been previously proposed to improve the usability of enclaves, their provision patterns are still confronted with security challenges. This paper presents Palantir, a verifiable multi-layered inter-enclave privilege model for secure feature extensions to enclaves. Specifically, a parent-children inter-enclave relationship, with which a parent enclave is granted two privileged permissions, the Execution Control and Spatial Control, over its children enclaves to facilitate secure feature extensions, is introduced. Moreover, by enabling nesting parent-children relationships, Palantir achieves multi-layered privileges (MLP) that allow feature extensions to be placed in various privilege layers following the Principle of Least Privilege. To prove the security of Palantir, we verified that our privilege model does not break or weaken the security guarantees of enclaves by building and verifying a formal model named $text{TAP}^{infty}$. Furthermore, We implemented a prototype of Palantir on Penglai, an open-sourced RISC-V TEE platform. The evaluation demonstrates the promising performance of Palantir in runtime overhead $(<5%)$ and startup latencies.

View More Papers

PhantomLiDAR: Cross-modality Signal Injection Attacks against LiDAR

Zizhi Jin (Zhejiang University), Qinhong Jiang (Zhejiang University), Xuancun Lu (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

The Philosopher’s Stone: Trojaning Plugins of Large Language Models

Tian Dong (Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Guoxing Chen (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Yan Meng (Shanghai Jiao Tong University), Shaofeng Li (Southeast University), Zhen Liu (Shanghai Jiao Tong University), Haojin Zhu (Shanghai Jiao Tong University)

Read More

Onion Franking: Abuse Reports for Mix-Based Private Messaging

Matthew Gregoire (University of North Carolina at Chapel Hill), Margaret Pierce (University of North Carolina at Chapel Hill), Saba Eskandarian (University of North Carolina at Chapel Hill)

Read More

MingledPie: A Cluster Mingling Approach for Mitigating Preference Profiling...

Cheng Zhang (Hunan University), Yang Xu (Hunan University), Jianghao Tan (Hunan University), Jiajie An (Hunan University), Wenqiang Jin (Hunan University)

Read More