Ganxiang Yang (Shanghai Jiao Tong University), Chenyang Liu (Shanghai Jiao Tong University), Zhen Huang (Shanghai Jiao Tong University), Guoxing Chen (Shanghai Jiao Tong University), Hongfei Fu (Shanghai Jiao Tong University), Yuanyuan Zhang (Shanghai Jiao Tong University), Haojin Zhu (Shanghai Jiao Tong University)

Trusted Execution Environments (TEE) have been widely adopted as a protection approach for security-critical applications. Although feature extensions have been previously proposed to improve the usability of enclaves, their provision patterns are still confronted with security challenges. This paper presents Palantir, a verifiable multi-layered inter-enclave privilege model for secure feature extensions to enclaves. Specifically, a parent-children inter-enclave relationship, with which a parent enclave is granted two privileged permissions, the Execution Control and Spatial Control, over its children enclaves to facilitate secure feature extensions, is introduced. Moreover, by enabling nesting parent-children relationships, Palantir achieves multi-layered privileges (MLP) that allow feature extensions to be placed in various privilege layers following the Principle of Least Privilege. To prove the security of Palantir, we verified that our privilege model does not break or weaken the security guarantees of enclaves by building and verifying a formal model named $text{TAP}^{infty}$. Furthermore, We implemented a prototype of Palantir on Penglai, an open-sourced RISC-V TEE platform. The evaluation demonstrates the promising performance of Palantir in runtime overhead $(<5%)$ and startup latencies.

View More Papers

SCAMMAGNIFIER: Piercing the Veil of Fraudulent Shopping Website Campaigns

Marzieh Bitaab (Arizona State University), Alireza Karimi (Arizona State University), Zhuoer Lyu (Arizona State University), Adam Oest (Amazon), Dhruv Kuchhal (Amazon), Muhammad Saad (X Corp.), Gail-Joon Ahn (Arizona State University), Ruoyu Wang (Arizona State University), Tiffany Bao (Arizona State University), Yan Shoshitaishvili (Arizona State University), Adam Doupé (Arizona State University)

Read More

Power-Related Side-Channel Attacks using the Android Sensor Framework

Mathias Oberhuber (Graz University of Technology), Martin Unterguggenberger (Graz University of Technology), Lukas Maar (Graz University of Technology), Andreas Kogler (Graz University of Technology), Stefan Mangard (Graz University of Technology)

Read More

Retrofitting XoM for Stripped Binaries without Embedded Data Relocation

Chenke Luo (Wuhan University), Jiang Ming (Tulane University), Mengfei Xie (Wuhan University), Guojun Peng (Wuhan University), Jianming Fu (Wuhan University)

Read More

URVFL: Undetectable Data Reconstruction Attack on Vertical Federated Learning

Duanyi Yao (Hong Kong University of Science and Technology), Songze Li (Southeast University), Xueluan Gong (Wuhan University), Sizai Hou (Hong Kong University of Science and Technology), Gaoning Pan (Hangzhou Dianzi University)

Read More