Ganxiang Yang (Shanghai Jiao Tong University), Chenyang Liu (Shanghai Jiao Tong University), Zhen Huang (Shanghai Jiao Tong University), Guoxing Chen (Shanghai Jiao Tong University), Hongfei Fu (Shanghai Jiao Tong University), Yuanyuan Zhang (Shanghai Jiao Tong University), Haojin Zhu (Shanghai Jiao Tong University)

Trusted Execution Environments (TEE) have been widely adopted as a protection approach for security-critical applications. Although feature extensions have been previously proposed to improve the usability of enclaves, their provision patterns are still confronted with security challenges. This paper presents Palantir, a verifiable multi-layered inter-enclave privilege model for secure feature extensions to enclaves. Specifically, a parent-children inter-enclave relationship, with which a parent enclave is granted two privileged permissions, the Execution Control and Spatial Control, over its children enclaves to facilitate secure feature extensions, is introduced. Moreover, by enabling nesting parent-children relationships, Palantir achieves multi-layered privileges (MLP) that allow feature extensions to be placed in various privilege layers following the Principle of Least Privilege. To prove the security of Palantir, we verified that our privilege model does not break or weaken the security guarantees of enclaves by building and verifying a formal model named $text{TAP}^{infty}$. Furthermore, We implemented a prototype of Palantir on Penglai, an open-sourced RISC-V TEE platform. The evaluation demonstrates the promising performance of Palantir in runtime overhead $(<5%)$ and startup latencies.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 118 ) ) ) [post__not_in] => Array ( [0] => 20069 ) )

Vision: The Price Should Be Right: Exploring User Perspectives...

Jacob Hopkins (Texas A&M University - Corpus Christi), Carlos Rubio-Medrano (Texas A&M University - Corpus Christi), Cori Faklaris (University of North Carolina at Charlotte)

Read More

Black-box Membership Inference Attacks against Fine-tuned Diffusion Models

Yan Pang (University of Virginia), Tianhao Wang (University of Virginia)

Read More

Security Advice on Content Filtering and Circumvention for Parents...

Ran Elgedawy (The University of Tennessee, Knoxville), John Sadik (The University of Tennessee, Knoxville), Anuj Gautam (The University of Tennessee, Knoxville), Trinity Bissahoyo (The University of Tennessee, Knoxville), Christopher Childress (The University of Tennessee, Knoxville), Jacob Leonard (The University of Tennessee, Knoxville), Clay Shubert (The University of Tennessee, Knoxville), Scott Ruoti (The University of Tennessee,…

Read More

”Who is Trying to Access My Account?” Exploring User...

Tongxin Wei (Nankai University), Ding Wang (Nankai University), Yutong Li (Nankai University), Yuehuan Wang (Nankai University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)