Ganxiang Yang (Shanghai Jiao Tong University), Chenyang Liu (Shanghai Jiao Tong University), Zhen Huang (Shanghai Jiao Tong University), Guoxing Chen (Shanghai Jiao Tong University), Hongfei Fu (Shanghai Jiao Tong University), Yuanyuan Zhang (Shanghai Jiao Tong University), Haojin Zhu (Shanghai Jiao Tong University)

Trusted Execution Environments (TEE) have been widely adopted as a protection approach for security-critical applications. Although feature extensions have been previously proposed to improve the usability of enclaves, their provision patterns are still confronted with security challenges. This paper presents Palantir, a verifiable multi-layered inter-enclave privilege model for secure feature extensions to enclaves. Specifically, a parent-children inter-enclave relationship, with which a parent enclave is granted two privileged permissions, the Execution Control and Spatial Control, over its children enclaves to facilitate secure feature extensions, is introduced. Moreover, by enabling nesting parent-children relationships, Palantir achieves multi-layered privileges (MLP) that allow feature extensions to be placed in various privilege layers following the Principle of Least Privilege. To prove the security of Palantir, we verified that our privilege model does not break or weaken the security guarantees of enclaves by building and verifying a formal model named $text{TAP}^{infty}$. Furthermore, We implemented a prototype of Palantir on Penglai, an open-sourced RISC-V TEE platform. The evaluation demonstrates the promising performance of Palantir in runtime overhead $(<5%)$ and startup latencies.

View More Papers

The Midas Touch: Triggering the Capability of LLMs for...

Yi Yang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Jinghua Liu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Kai Chen (Institute of Information Engineering, Chinese Academy of…

Read More

Characterizing the Impact of Audio Deepfakes in the Presence...

Magdalena Pasternak (University of Florida), Kevin Warren (University of Florida), Daniel Olszewski (University of Florida), Susan Nittrouer (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Read More

Oreo: Protecting ASLR Against Microarchitectural Attacks

Shixin Song (Massachusetts Institute of Technology), Joseph Zhang (Massachusetts Institute of Technology), Mengjia Yan (Massachusetts Institute of Technology)

Read More