Alexander Kedrowitsch (Virginia Tech), Jonathan Black (Virginia Tech) Daphne Yao (Virginia Tech)

Inter-satellite links will unlock true global access to high-speed internet delivered by Low Earth Orbit (LEO) mega-constellations. Functional packet routing within the constraints of the space environment, spacecraft design, and continual satellite mobility is uniquely challenging and requires novel routing algorithm approaches. Additionally, recent real-world events have highlighted adversarial attempts to deny and disrupt mega-constellation networking capabilities. In this paper, we advance highly resilient LEO mega-constellation dynamic routing algorithms by presenting our novel, ISL architecture-derived, network coordinate system. This coordinate system simplifies the network topology and permits increasingly impactful routing decisions with minimal computational overhead. From our topology, we demonstrate a proof-of-concept, lightweight routing algorithm that is highly resilient and scalable. To promote standardized resilience comparisons for LEO mega-constellation routing algorithms, we also propose a routing resilience testing framework that defines key performance metrics, adversarial capabilities, and testing scenarios. Using our proposed framework, we demonstrate our routing algorithm’s increased resilience over several state-of-the-art dynamic routing algorithms, with 12% packet delivery rate improvement during high adversarial disruption intensities.

View More Papers

OrbID: Identifying Orbcomm Satellite RF Fingerprints

Cédric Solenthaler (ETH Zurich), Joshua Smailes (University of Oxford), Martin Strohmeier (armasuisse Science & Technology)

Read More

WIP: Towards Practical LiDAR Spoofing Attack against Vehicles Driving...

Ryo Suzuki (Keio University), Takami Sato (University of California, Irvine), Yuki Hayakawa, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

The CURE to Vulnerabilities in RPKI Validation

Donika Mirdita (Technische Universität Darmstadt), Haya Schulmann (Goethe-Universität Frankfurt), Niklas Vogel (Goethe-Universität Frankfurt), Michael Waidner (Technische Universität Darmstadt, Fraunhofer SIT)

Read More

QPEP in the Real World: A Testbed for Secure...

Julian Huwyler (ETH Zurich), James Pavur (University of Oxford), Giorgio Tresoldi and Martin Strohmeier (Cyber-Defence Campus) Presenter: Martin Strohmeier

Read More