Mohit Kumar Jangid (Ohio State University) and Zhiqiang Lin (Ohio State University)

Being safer, cleaner, and more efficient, connected and autonomous vehicles (CAVs) are expected to be the dominant vehicles of future transportation systems. However, there are enormous security and privacy challenges while also considering the efficiency and and scalability. One key challenge is how to efficiently authenticate a vehicle in the ad-hoc CAV network and ensure its tamper-resistance, accountability, and non-repudiation. In this paper, we present the design and implementation of Vehicle-to-Vehicle (V2V) protocol by leveraging trusted execution environment (TEE), and show how this TEE-based protocol achieves the objective of authentication, privacy, accountability and revocation as well as the scalability and efficiency. We hope t hat our TEE-based V2V protocol can inspire further research into CAV security and privacy, particularly how to leverage TEE to solve some of the hard problems and make CAV closer to practice.

View More Papers

Speeding Dumbo: Pushing Asynchronous BFT Closer to Practice

Bingyong Guo (Institute of Software, Chinese Academy of Sciences), Yuan Lu (Institute of Software Chinese Academy of Sciences), Zhenliang Lu (The University of Sydney), Qiang Tang (The University of Sydney), jing xu (Institute of Software, Chinese Academy of Sciences), Zhenfeng Zhang (Institute of Software, Chinese Academy of Sciences)

Read More

Chosen-Instruction Attack Against Commercial Code Virtualization Obfuscators

Shijia Li (College of Computer Science, NanKai University and the Tianjin Key Laboratory of Network and Data Security Technology), Chunfu Jia (College of Computer Science, NanKai University and the Tianjin Key Laboratory of Network and Data Security Technology), Pengda Qiu (College of Computer Science, NanKai University and the Tianjin Key Laboratory of Network and Data…

Read More

Repttack: Exploiting Cloud Schedulers to Guide Co-Location Attacks

Chongzhou Fang (University of California, Davis), Han Wang (University of California, Davis), Najmeh Nazari (University of California, Davis), Behnam Omidi (George Mason University), Avesta Sasan (University of California, Davis), Khaled N. Khasawneh (George Mason University), Setareh Rafatirad (University of California, Davis), Houman Homayoun (University of California, Davis)

Read More