Bo Yang (Zhejiang University), Yushi Cheng (Tsinghua University), Zizhi Jin (Zhejiang University), Xiaoyu Ji (Zhejiang University) and Wenyuan Xu (Zhejiang University)

Due to the booming of autonomous driving, in which LiDAR plays a critical role in the task of environment perception, its reliability issues have drawn much attention recently. LiDARs usually utilize deep neural models for 3D point cloud perception, which have been demonstrated to be vulnerable to imperceptible adversarial examples. However, prior work usually manipulates point clouds in the digital world without considering the physical working principle of the actual LiDAR. As a result, the generated adversarial point clouds may be realizable and effective in simulation but cannot be perceived by physical LiDARs. In this work, we introduce the physical principle of LiDARs and propose a new method for generating 3D adversarial point clouds in accord with it that can achieve two types of spoofing attacks: object hiding and object creating. We also evaluate the effectiveness of the proposed method with two 3D object detectors on the KITTI vision benchmark.

View More Papers

Car Hacking and Defense Competition on In-Vehicle Network

Hyunjae Kang, Byung Il Kwak, Young Hun Lee, Haneol Lee, Hwejae Lee, and Huy Kang Kim (Korea University)

Read More

Interpretable Federated Transformer Log Learning for Cloud Threat Forensics

Gonzalo De La Torre Parra (University of the Incarnate Word, TX, USA), Luis Selvera (Secure AI and Autonomy Lab, The University of Texas at San Antonio, TX, USA), Joseph Khoury (The Cyber Center For Security and Analytics, University of Texas at San Antonio, TX, USA), Hector Irizarry (Raytheon, USA), Elias Bou-Harb (The Cyber Center For…

Read More

Demo #9: Dynamic Time Warping as a Tool for...

Mars Rayno (Colorado State University) and Jeremy Daily (Colorado State University)

Read More

PHYjacking: Physical Input Hijacking for Zero-Permission Authorization Attacks on...

Xianbo Wang (The Chinese University of Hong Kong), Shangcheng Shi (The Chinese University of Hong Kong), Yikang Chen (The Chinese University of Hong Kong), Wing Cheong Lau (The Chinese University of Hong Kong)

Read More