Alireza Mohammadi (University of Michigan-Dearborn) and Hafiz Malik (University of Michigan-Dearborn)

Motivated by ample evidence in the automotive cybersecurity literature that the car brake ECUs can be maliciously reprogrammed, it has been shown that an adversary who can directly control the frictional brake actuators can induce wheel lockup conditions despite having a limited knowledge of the tire-road interaction characteristics. In this paper, we investigate the destabilizing effect of such wheel lockup attacks on the lateral motion stability of vehicles from a robust stability perspective. Furthermore, we propose a quadratic programming (QP) problem that the adversary can solve for finding the optimal destabilizing longitudinal slip reference values.

View More Papers

Interpretable Federated Transformer Log Learning for Cloud Threat Forensics

Gonzalo De La Torre Parra (University of the Incarnate Word, TX, USA), Luis Selvera (Secure AI and Autonomy Lab, The University of Texas at San Antonio, TX, USA), Joseph Khoury (The Cyber Center For Security and Analytics, University of Texas at San Antonio, TX, USA), Hector Irizarry (Raytheon, USA), Elias Bou-Harb (The Cyber Center For…

Read More

Demo #5: Disclosing the Pringles Syndrome in Tesla FSD...

Zhisheng Hu (Baidu), Shengjian Guo (Baidu) and Kang Li (Baidu)

Read More

Generation of CAN-based Wheel Lockup Attacks on the Dynamics...

Alireza Mohammadi (University of Michigan-Dearborn), Hafiz Malik (University of Michigan-Dearborn) and Masoud Abbaszadeh (GE Global Research)

Read More

Fine-Grained Coverage-Based Fuzzing

Bernard Nongpoh (Université Paris Saclay), Marwan Nour (Université Paris Saclay), Michaël Marcozzi (Université Paris Saclay), Sébastien Bardin (Université Paris Saclay)

Read More