Alireza Mohammadi (University of Michigan-Dearborn) and Hafiz Malik (University of Michigan-Dearborn)

Motivated by ample evidence in the automotive cybersecurity literature that the car brake ECUs can be maliciously reprogrammed, it has been shown that an adversary who can directly control the frictional brake actuators can induce wheel lockup conditions despite having a limited knowledge of the tire-road interaction characteristics. In this paper, we investigate the destabilizing effect of such wheel lockup attacks on the lateral motion stability of vehicles from a robust stability perspective. Furthermore, we propose a quadratic programming (QP) problem that the adversary can solve for finding the optimal destabilizing longitudinal slip reference values.

View More Papers

FedCRI: Federated Mobile Cyber-Risk Intelligence

Hossein Fereidooni (Technical University of Darmstadt), Alexandra Dmitrienko (University of Wuerzburg), Phillip Rieger (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt), Felix Madlener (KOBIL)

Read More

DRAWN APART: A Device Identification Technique based on Remote...

Tomer Laor (Ben-Gurion Univ. of the Negev), Naif Mehanna and Antonin Durey (Univ. Lille / Inria), Vitaly Dyadyuk (Ben-Gurion Univ. of the Negev), Pierre Laperdrix (CNRS, Univ. Lille, Inria Lille), Clémentine Maurice (CNRS), Yossi Oren (Ben-Gurion Univ. of the Negev), Romain Rouvoy (Univ. Lille / Inria / IUF), Walter Rudametkin (Univ. Lille / Inria), Yuval…

Read More

Shipping security at scale in the Chrome browser

Adriana Porter Felt (Director of Engineering for Chrome)

Read More

Log4shell: Redefining the Web Attack Surface

Douglas Everson (Clemson University), Long Cheng (Clemson University), and Zhenkai Zhang (Clemson University)

Read More