Takami Sato (UC Irvine) and Qi Alfred Chen (UC Irvine)

Deep Neural Network (DNN)-based lane detection is widely utilized in autonomous driving technologies. At the same time, recent studies demonstrate that adversarial attacks on lane detection can cause serious consequences on particular production-grade autonomous driving systems. However, the generality of the attacks, especially their effectiveness against other state-of-the-art lane detection approaches, has not been well studied. In this work, we report our progress on conducting the first large-scale empirical study to evaluate the robustness of 4 major types of lane detection methods under 3 types of physical-world adversarial attacks in end-to-end driving scenarios. We find that each lane detection method has different security characteristics, and in particular, some models are highly vulnerable to certain types of attack. Surprisingly, but probably not coincidentally, popular production lane centering systems properly select the lane detection approach which shows higher resistance to such attacks. In the near future, more and more automakers will include autonomous driving features in their products. We hope that our research will help as many automakers as possible to recognize the risks in choosing lane detection algorithms.

View More Papers

Demo #13: Attacking LiDAR Semantic Segmentation in Autonomous Driving

Yi Zhu (State University of New York at Buffalo), Chenglin Miao (University of Georgia), Foad Hajiaghajani (State University of New York at Buffalo), Mengdi Huai (University of Virginia), Lu Su (Purdue University) and Chunming Qiao (State University of New York at Buffalo)

Read More

Impact Evaluation of Falsified Data Attacks on Connected Vehicle...

Shihong Huang (University of Michigan, Ann Arbor), Yiheng Feng (Purdue University), Wai Wong (University of Michigan, Ann Arbor), Qi Alfred Chen (UC Irvine), Z. Morley Mao and Henry X. Liu (University of Michigan, Ann Arbor) Best Paper Award Runner-up ($200 cash prize)!

Read More

Demo #2: Policy-based Discovery and Patching of Logic Bugs...

Hyungsub Kim (Purdue University), Muslum Ozgur Ozmen (Purdue University), Antonio Bianchi (Purdue University), Z. Berkay Celik (Purdue University) and Dongyan Xu (Purdue University)

Read More

Demo #15: Remote Adversarial Attack on Automated Lane Centering

Yulong Cao (University of Michigan), Yanan Guo (University of Pittsburgh), Takami Sato (UC Irvine), Qi Alfred Chen (UC Irvine), Z. Morley Mao (University of Michigan) and Yueqiang Cheng (NIO)

Read More