Raymond Muller (Purdue University), Yanmao Man (University of Arizona), Z. Berkay Celik (Purdue University), Ming Li (University of Arizona) and Ryan Gerdes (Virginia Tech)

With emerging vision-based autonomous driving (AD) systems, it becomes increasingly important to have datasets to evaluate their correct operation and identify potential security flaws. However, when collecting a large amount of data, either human experts manually label potentially hundreds of thousands of image frames or systems use machine learning algorithms to label the data, with the hope that the accuracy is good enough for the application. This can become especially problematic when tracking the context information, such as the location and velocity of surrounding objects, useful to evaluate the correctness and improve stability and robustness of the AD systems.

View More Papers

Local and Central Differential Privacy for Robustness and Privacy...

Mohammad Naseri (University College London), Jamie Hayes (DeepMind), Emiliano De Cristofaro (University College London & Alan Turing Institute)

Read More

Demo #2: Policy-based Discovery and Patching of Logic Bugs...

Hyungsub Kim (Purdue University), Muslum Ozgur Ozmen (Purdue University), Antonio Bianchi (Purdue University), Z. Berkay Celik (Purdue University) and Dongyan Xu (Purdue University)

Read More

Dissecting American Fuzzy Lop – A FuzzBench Evaluation

Andrea Fioraldi (EURECOM), Alessandro Mantovani (EURECOM), Dominik Maier (TU Berlin), Davide Balzarotti (EURECOM)

Read More

(Short) Object Removal Attacks on LiDAR-based 3D Object Detectors

Zhongyuan Hau, Kenneth Co, Soteris Demetriou, and Emil Lupu (Imperial College London) Best Short Paper Award Runner-up!

Read More