Abdullah Zubair Mohammed (Virginia Tech), Yanmao Man (University of Arizona), Ryan Gerdes (Virginia Tech), Ming Li (University of Arizona) and Z. Berkay Celik (Purdue University)

The Controller Area Network (CAN) bus standard is the most common in-vehicle network that provides communication between Electronic Control Units (ECUs). CAN messages lack authentication and data integrity protection mechanisms and hence are vulnerable to attacks, such as impersonation and data injection, at the digital level. The physical layer of the bus allows for a one-way change of a given bit to accommodate prioritization; viz. a recessive bit (1) may be changed to a dominant one (0). In this paper, we propose a physical-layer data manipulation attack wherein multiple compromised ECUs collude to cause 0→1 (i.e., dominant to recessive) bit-flips, allowing for arbitrary bit-flips in transmitted messages. The attack is carried out by inducing transient voltages in the CAN bus that are heightened due to the parasitic reactance of the bus and non-ideal properties of the line drivers. Simulation results indicate that, with more than eight compromised ECUs, an attacker can induce a sufficient voltage drop to cause dominant bits to be flipped to recessive ones.

View More Papers

Dissecting American Fuzzy Lop – A FuzzBench Evaluation

Andrea Fioraldi (EURECOM), Alessandro Mantovani (EURECOM), Dominik Maier (TU Berlin), Davide Balzarotti (EURECOM)

Read More

PickMail: A Serious Game for Email Phishing Awareness Training

Gokul CJ (TCS Research, Tata Consultancy Services Ltd., Pune), Vijayanand Banahatti (TCS Research, Tata Consultancy Services Ltd., Pune), Sachin Lodha (TCS Research, Tata Consultancy Services Ltd., Pune)

Read More

Log4shell: Redefining the Web Attack Surface

Douglas Everson (Clemson University), Long Cheng (Clemson University), and Zhenkai Zhang (Clemson University)

Read More

MIRROR: Model Inversion for Deep Learning Network with High...

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University), Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More