Alireza Mohammadi (University of Michigan-Dearborn), Hafiz Malik (University of Michigan-Dearborn) and Masoud Abbaszadeh (GE Global Research)

Recent automotive hacking incidences have demonstrated that when an adversary manages to gain access to a safety-critical CAN, severe safety implications will ensue. Under such threats, this paper explores the capabilities of an adversary who is interested in engaging the car brakes at full speed and would like to cause wheel lockup conditions leading to catastrophic road injuries. This paper shows that the physical capabilities of a CAN attacker can be studied through the lens of closed-loop attack policy design. In particular, it is demonstrated that the adversary can cause wheel lockups by means of closed-loop attack policies for commanding the frictional brake actuators under a limited knowledge of the tire-road interaction characteristics. The effectiveness of the proposed wheel lockup attack policy is shown via numerical simulations under different road conditions.

View More Papers

GPSKey: GPS based Secret Key Establishment for Intra-Vehicle Environment

Edwin Yang (University of Oklahoma) and Song Fang (University of Oklahoma)

Read More

F-PKI: Enabling Innovation and Trust Flexibility in the HTTPS...

Laurent Chuat (ETH Zurich), Cyrill Krähenbühl (ETH Zürich), Prateek Mittal (Princeton University), Adrian Perrig (ETH Zurich)

Read More

Demo #9: Attacking Multi-Sensor Fusion based Localization in High-Level...

Junjie Shen, Jun Yeon Won, Zeyuan Chen and Qi Alfred Chen (UC Irvine)

Read More

SynthCT: Towards Portable Constant-Time Code

Sushant Dinesh (University of Illinois at Urbana Champaign), Grant Garrett-Grossman (University of Illinois at Urbana Champaign), Christopher W. Fletcher (University of Illinois at Urbana Champaign)

Read More