Yulong Cao (University of Michigan), Ningfei Wang (UC, Irvine), Chaowei Xiao (Arizona State University), Dawei Yang (University of Michigan), Jin Fang (Baidu Research), Ruigang Yang (University of Michigan), Qi Alfred Chen (UC, Irvine), Mingyan Liu (University of Michigan) and Bo Li (University of Illinois at Urbana-Champaign)

In autonomous driving (AD) vehicles, Multi-Sensor Fusion (MSF) is used to combine perception results from multiple sensors such as LiDARs (Light Detection And Ranging) and cameras for both accuracy and robustness. In this work, we design the first attack that fundamentally defeats MSF-based AD perception by generating 3D adversarial objects. This demonstration will include video and figure demonstrations for the generated 3D adversarial objects and the end-to-end consequences.

View More Papers

Chhoyhopper: A Moving Target Defense with IPv6

A S M Rizvi (University of Southern California/Information Sciences Institute) and John Heidemann (University of Southern California/Information Sciences Institute)

Read More

Time-Based CAN Intrusion Detection Benchmark

Deborah Blevins (University of Kentucky), Pablo Moriano, Robert Bridges, Miki Verma, Michael Iannacone, and Samuel Hollifield (Oak Ridge National Laboratory)

Read More

WIP: Interrupt Attack on TEE-protected Robotic Vehicles

Mulong Luo (Cornell University) and G. Edward Suh (Cornell University)

Read More

Demo #10: Hijacking Connected Vehicle Alexa Skills

Wenbo Ding (University at Buffalo), Long Cheng (Clemson University), Xianghang Mi (University of Science and Technology of China), Ziming Zhao (University at Buffalo) and Hongxin Hu (University at Buffalo)

Read More