Jim Alves-Foss, Varsha Venugopal (University of Idaho)

The effectiveness of binary analysis tools and techniques is often measured with respect to how well they map to a ground truth. We have found that not all ground truths are created equal. This paper challenges the binary analysis community to take a long look at the concept of ground truth, to ensure that we are in agreement with definition(s) of ground truth, so that we can be confident in the evaluation of tools and techniques. This becomes even more important as we move to trained machine learning models, which are only as useful as the validity of the ground truth in the training.

View More Papers

o-glassesX: Compiler Provenance Recovery with Attention Mechanism from a...

Yuhei Otsubo (National Police Agency, Tokyo, Japan), Akira Otsuka (Institute of information Security, Japan), Mamoru Mimura (National Defense Academy, Japan), Takeshi Sakaki (The University of Tokyo, Japan), Hiroshi Ukegawa (National Police Agency, Tokyo, Japan)

Read More

MIRROR: Model Inversion for Deep LearningNetwork with High Fidelity

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University); Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More

Vehicle Lateral Motion Stability Under Wheel Lockup Attacks

Alireza Mohammadi (University of Michigan-Dearborn) and Hafiz Malik (University of Michigan-Dearborn)

Read More

Mnemocrypt

André Pacteau, Antonino Vitale, Davide Balzarotti, Simone Aonzo (EURECOM)

Read More