Zekun Cai (Penn State University), Aiping Xiong (Penn State University)

To enhance the acceptance of connected autonomous vehicles (CAVs) and facilitate designs to protect people’s privacy, it is essential to evaluate how people perceive the data collection and use inside and outside the CAVs and investigate effective ways to help them make informed privacy decisions. We conducted an online survey (N = 381) examining participants’ utility-privacy tradeoff and data-sharing decisions in different CAV scenarios. Interventions that may encourage safer data-sharing decisions were also evaluated relative to a control. Results showed that the feedback intervention was effective in enhancing participants’ knowledge of possible inferences of personal information in the CAV scenarios. Consequently, it helped participants make more conservative data-sharing decisions. We also measured participants’ prior experience with connectivity and driver-assistance technologies and obtained its influence on their privacy decisions. We discuss the implications of the results for usable privacy design for CAVs.

View More Papers

Clarion: Anonymous Communication from Multiparty Shuffling Protocols

Saba Eskandarian (University of North Carolina at Chapel Hill), Dan Boneh (Stanford University)

Read More

Problematic Content in Online Ads

Franzisca Roesner (University of Washington)

Read More

What the Fork? Finding and Analyzing Malware in GitHub...

Alan Cao (New York University) and Brendan Dolan-Gavitt (New York University)

Read More

DRAWN APART: A Device Identification Technique based on Remote...

Tomer Laor (Ben-Gurion Univ. of the Negev), Naif Mehanna (Univ. Lille, CNRS, Inria), Antonin Durey (Univ. Lille, CNRS, Inria), Vitaly Dyadyuk (Ben-Gurion Univ. of the Negev), Pierre Laperdrix (Univ. Lille, CNRS, Inria), Clémentine Maurice (Univ. Lille, CNRS, Inria), Yossi Oren (Ben-Gurion Univ. of the Negev), Romain Rouvoy (Univ. Lille, CNRS, Inria / IUF), Walter Rudametkin…

Read More