Shoham Shitrit(University of Rochester) and Sreepathi Pai (University of Rochester)

Formal semantics for instruction sets can be used to validate implementations through formal verification. However, testing is often the only feasible method when checking an artifact such as a hardware processor, a simulator, or a compiler. In this work, we construct a pipeline that can be used to automatically generate a test suite for an instruction set from its executable semantics. Our method mutates the formal semantics, expressed as a C program, to introduce bugs in the semantics. Using a bounded model checker, we then check the mutated semantics to the original for equivalence. Since the mutated and original semantics are usually not equivalent, this yields counterexamples which can be used to construct a test suite. By combining a mutation testing engine with a bounded model checker, we obtain a fully automatic method for constructing test suites for a given formal semantics. We intend to instantiate this on a formal semantics of a portion of NVIDIA’s PTX instruction set for GPUs that we have developed. We will compare to our existing method of testing that uses stratified random sampling and evaluate effectiveness, cost, and feasibility.

View More Papers

Explainable AI in Cybersecurity Operations: Lessons Learned from xAI...

Megan Nyre-Yu (Sandia National Laboratories), Elizabeth S. Morris (Sandia National Laboratories), Blake Moss (Sandia National Laboratories), Charles Smutz (Sandia National Laboratories), Michael R. Smith (Sandia National Laboratories)

Read More

datAFLow: Towards a Data-Flow-Guided Fuzzer

Adrian Herrera (Australian National University), Mathias Payer (EPFL), Antony Hosking (Australian National University)

Read More

CFInsight: A Comprehensive Metric for CFI Policies

Tommaso Frassetto (Technical University of Darmstadt), Patrick Jauernig (Technical University of Darmstadt), David Koisser (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More