Shoham Shitrit(University of Rochester) and Sreepathi Pai (University of Rochester)

Formal semantics for instruction sets can be used to validate implementations through formal verification. However, testing is often the only feasible method when checking an artifact such as a hardware processor, a simulator, or a compiler. In this work, we construct a pipeline that can be used to automatically generate a test suite for an instruction set from its executable semantics. Our method mutates the formal semantics, expressed as a C program, to introduce bugs in the semantics. Using a bounded model checker, we then check the mutated semantics to the original for equivalence. Since the mutated and original semantics are usually not equivalent, this yields counterexamples which can be used to construct a test suite. By combining a mutation testing engine with a bounded model checker, we obtain a fully automatic method for constructing test suites for a given formal semantics. We intend to instantiate this on a formal semantics of a portion of NVIDIA’s PTX instruction set for GPUs that we have developed. We will compare to our existing method of testing that uses stratified random sampling and evaluate effectiveness, cost, and feasibility.

View More Papers

V-Range: Enabling Secure Ranging in 5G Wireless Networks

Mridula Singh (CISPA - Helmholtz Center for Information Security), Marc Roeschlin (ETH Zurich), Aanjhan Ranganathan (Northeastern University), Srdjan Capkun (ETH Zurich)

Read More

Hazard Integrated: Understanding Security Risks in App Extensions to...

Mingming Zha (Indiana University Bloomington), Jice Wang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences), Yuhong Nan (Sun Yat-sen University), Xiaofeng Wang (Indiana Unversity Bloomington), Yuqing Zhang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences), Zelin Yang (National Computer Network Intrusion Protection Center, University of Chinese Academy…

Read More

HARPO: Learning to Subvert Online Behavioral Advertising

Jiang Zhang (University of Southern California), Konstantinos Psounis (University of Southern California), Muhammad Haroon (University of California, Davis), Zubair Shafiq (University of California, Davis)

Read More