Andrea Fioraldi (EURECOM), Alessandro Mantovani (EURECOM), Dominik Maier (TU Berlin), Davide Balzarotti (EURECOM)

AFL is one of the most used and extended fuzzing projects, adopted by industry and academic researchers alike. While the community agrees on AFL’s effectiveness at discovering new vulnerabilities and at its outstanding usability, many of its internal design choices remain untested to date. Security practitioners often clone the project “as-is” and use it as a starting point to develop new techniques, usually taking everything under the hood for granted. Instead, we believe that a careful analysis of the different parameters could help modern fuzzers to improve their performance and explain how each choice can affect the outcome of security testing, either negatively or positively.

The goal of this paper is to provide a comprehensive understanding of the internal mechanisms of AFL by performing experiments and comparing different metrics used to evaluate fuzzers. This will prove the efficacy of some patterns and clarify which aspects are instead outdated. To achieve this, we set up nine unique experiments that we carried out on the popular Fuzzbench platform. Each test focuses on a different aspect of AFL, ranging from its mutation approach to the feedback encoding scheme and the scheduling methodologies.

Our preliminary findings show that each design choice affects different factors of AFL. While some of these are positively correlated with the number of detected bugs or the target coverage, other features are related to usability and reliability. Most important, the outcome of our experiments will indicate which parts of AFL we should preserve in modern fuzzers.

View More Papers

Shaduf: Non-Cycle Payment Channel Rebalancing

Zhonghui Ge (Shanghai Jiao Tong University), Yi Zhang (Shanghai Jiao Tong University), Yu Long (Shanghai Jiao Tong University), Dawu Gu (Shanghai Jiao Tong University)

Read More

Hybrid Trust Multi-party Computation with Trusted Execution Environment

Pengfei Wu (School of Computing, National University of Singapore), Jianting Ning (College of Computer and Cyber Security, Fujian Normal University; Institute of Information Engineering, Chinese Academy of Sciences), Jiamin Shen (School of Computing, National University of Singapore), Hongbing Wang (School of Computing, National University of Singapore), Ee-Chien Chang (School of Computing, National University of Singapore)

Read More

Generating 3D Adversarial Point Clouds under the Principle of...

Bo Yang (Zhejiang University), Yushi Cheng (Tsinghua University), Zizhi Jin (Zhejiang University), Xiaoyu Ji (Zhejiang University) and Wenyuan Xu (Zhejiang University)

Read More