Ren Zhang (Nervos), Dingwei Zhang (Nervos), Quake Wang (Nervos), Shichen Wu (School of Cyber Science and Technology, Shandong University), Jan Xie (Nervos), Bart Preneel (imec-COSIC, KU Leuven)

First implemented in Bitcoin, Nakamoto Consensus (NC) is the most influential consensus protocol in cryptocurrencies despite all the alternative protocols designed afterward. Nevertheless, NC is trapped by a security-performance tradeoff. While existing efforts mostly attempt to break this tradeoff via abandoning or adjusting NC's backbone protocol, we alternatively forward the relevance of the network layer. We identify and experimentally prove that the crux resides with the prolonged block propagation latency caused by not-yet-propagated transactions. We thus present a two-step mechanism to confirm only fully-propagated transactions, and therefore remove the limits upon NC's performance imposed by its security demands, realizing NC's untapped potential. Implementing this two-step mechanism, we propose NC-Max, whose (1) security is analyzed, proving that it provides stronger resistance than NC against transaction withholding attacks, and (2) performance is evaluated, showing that it exhausts the full throughput supported by the network, and shortens the transaction confirmation latency by 3.0 to 6.6 times compared to NC without compromising security. NC-Max is implemented in Nervos CKB, a public permissionless blockchain.

View More Papers

SynthCT: Towards Portable Constant-Time Code

Sushant Dinesh (University of Illinois at Urbana Champaign), Grant Garrett-Grossman (University of Illinois at Urbana Champaign), Christopher W. Fletcher (University of Illinois at Urbana Champaign)

Read More

The Taming of the Stack: Isolating Stack Data from...

Kaiming Huang (Penn State University), Yongzhe Huang (Penn State University), Mathias Payer (EPFL), Zhiyun Qian (UC Riverside), Jack Sampson (Penn State University), Gang Tan (Penn State University), Trent Jaeger (Penn State University)

Read More

Probe the Proto: Measuring Client-Side Prototype Pollution Vulnerabilities of...

Zifeng Kang (Johns Hopkins University), Song Li (Johns Hopkins University), Yinzhi Cao (Johns Hopkins University)

Read More

MobFuzz: Adaptive Multi-objective Optimization in Gray-box Fuzzing

Gen Zhang (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Tai Yue (National University of Defense Technology), Xiangdong Kong (National University of Defense Technology), Shan Huang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More