Ioanna Tzialla (New York University), Abhiram Kothapalli (Carnegie Mellon University), Bryan Parno (Carnegie Mellon University), Srinath Setty (Microsoft Research)

This paper introduces Verdict, a transparency dictionary, where an untrusted service maintains a label-value map that clients can query and update (foundational infrastructure for end-to-end encryption and other applications). To prevent unauthorized modifications to the dictionary, for example, by a malicious or a compromised service provider, Verdict produces publicly-verifiable cryptographic proofs that it correctly executes both reads and authorized updates. A key advance over prior work is that Verdict produces efficiently-verifiable proofs while incurring modest proving overheads. Verdict accomplishes this by composing indexed Merkle trees (a new SNARK-friendly data structure) with Phalanx (a new SNARK that supports amortized constant-sized proofs and leverages particular workload characteristics to speed up the prover). Our experimental evaluation demonstrates that Verdict scales to dictionaries with millions of labels while imposing modest overheads on the service and clients.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 55 ) ) ) [post__not_in] => Array ( [0] => 8544 ) )

Semantic-Informed Driver Fuzzing Without Both the Hardware Devices and...

Wenjia Zhao (Xi'an Jiaotong University and University of Minnesota), Kangjie Lu (University of Minnesota), Qiushi Wu (University of Minnesota), Yong Qi (Xi'an Jiaotong University)

Read More

Forensic Analysis of Configuration-based Attacks

Muhammad Adil Inam (University of Illinois at Urbana-Champaign), Wajih Ul Hassan (University of Illinois at Urbana-Champaign), Ali Ahad (University of Virginia), Adam Bates (University of Illinois at Urbana-Champaign), Rashid Tahir (University of Prince Mugrin), Tianyin Xu (University of Illinois at Urbana-Champaign), Fareed Zaffar (LUMS)

Read More

Repttack: Exploiting Cloud Schedulers to Guide Co-Location Attacks

Chongzhou Fang (University of California, Davis), Han Wang (University of California, Davis), Najmeh Nazari (University of California, Davis), Behnam Omidi (George Mason University), Avesta Sasan (University of California, Davis), Khaled N. Khasawneh (George Mason University), Setareh Rafatirad (University of California, Davis), Houman Homayoun (University of California, Davis)

Read More

VISAS-Detecting GPS spoofing attacks against drones by analyzing camera's...

Barak Davidovich (Ben-Gurion University of the Negev), Ben Nassi (Ben-Gurion University of the Negev) and Yuval Elovici (Ben-Gurion University of the Negev)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)