Ioanna Tzialla (New York University), Abhiram Kothapalli (Carnegie Mellon University), Bryan Parno (Carnegie Mellon University), Srinath Setty (Microsoft Research)

This paper introduces Verdict, a transparency dictionary, where an untrusted service maintains a label-value map that clients can query and update (foundational infrastructure for end-to-end encryption and other applications). To prevent unauthorized modifications to the dictionary, for example, by a malicious or a compromised service provider, Verdict produces publicly-verifiable cryptographic proofs that it correctly executes both reads and authorized updates. A key advance over prior work is that Verdict produces efficiently-verifiable proofs while incurring modest proving overheads. Verdict accomplishes this by composing indexed Merkle trees (a new SNARK-friendly data structure) with Phalanx (a new SNARK that supports amortized constant-sized proofs and leverages particular workload characteristics to speed up the prover). Our experimental evaluation demonstrates that Verdict scales to dictionaries with millions of labels while imposing modest overheads on the service and clients.

View More Papers

Dissecting American Fuzzy Lop – A FuzzBench Evaluation

Andrea Fioraldi (EURECOM), Alessandro Mantovani (EURECOM), Dominik Maier (TU Berlin), Davide Balzarotti (EURECOM)

Read More

PHYjacking: Physical Input Hijacking for Zero-Permission Authorization Attacks on...

Xianbo Wang (The Chinese University of Hong Kong), Shangcheng Shi (The Chinese University of Hong Kong), Yikang Chen (The Chinese University of Hong Kong), Wing Cheong Lau (The Chinese University of Hong Kong)

Read More

Demo #2: Policy-based Discovery and Patching of Logic Bugs...

Hyungsub Kim (Purdue University), Muslum Ozgur Ozmen (Purdue University), Antonio Bianchi (Purdue University), Z. Berkay Celik (Purdue University) and Dongyan Xu (Purdue University)

Read More

Detecting Obfuscated Function Clones in Binaries using Machine Learning

Michael Pucher (University of Vienna), Christian Kudera (SBA Research), Georg Merzdovnik (SBA Research)

Read More