Ioanna Tzialla (New York University), Abhiram Kothapalli (Carnegie Mellon University), Bryan Parno (Carnegie Mellon University), Srinath Setty (Microsoft Research)

This paper introduces Verdict, a transparency dictionary, where an untrusted service maintains a label-value map that clients can query and update (foundational infrastructure for end-to-end encryption and other applications). To prevent unauthorized modifications to the dictionary, for example, by a malicious or a compromised service provider, Verdict produces publicly-verifiable cryptographic proofs that it correctly executes both reads and authorized updates. A key advance over prior work is that Verdict produces efficiently-verifiable proofs while incurring modest proving overheads. Verdict accomplishes this by composing indexed Merkle trees (a new SNARK-friendly data structure) with Phalanx (a new SNARK that supports amortized constant-sized proofs and leverages particular workload characteristics to speed up the prover). Our experimental evaluation demonstrates that Verdict scales to dictionaries with millions of labels while imposing modest overheads on the service and clients.

View More Papers

Phishing awareness and education – When to best remind?

Benjamin Maximilian Berens (SECUSO, Karlsruhe Institute of Technology), Katerina Dimitrova, Mattia Mossano (SECUSO, Karlsruhe Institute of Technology), Melanie Volkamer (SECUSO, Karlsruhe Institute of Technology)

Read More

Above and Beyond: Organizational Efforts to Complement U.S. Digital...

Rock Stevens (University of Maryland), Faris Bugra Kokulu (Arizona State University), Adam Doupé (Arizona State University), Michelle L. Mazurek (University of Maryland)

Read More

hbACSS: How to Robustly Share Many Secrets

Thomas Yurek (University of Illinois at Urbana-Champaign), Licheng Luo (University of Illinois at Urbana-Champaign), Jaiden Fairoze (University of California, Berkeley), Aniket Kate (Purdue University), Andrew Miller (University of Illinois at Urbana-Champaign)

Read More

Demo #12: Too Afraid to Drive: Systematic Discovery of...

Ziwen Wan (UC Irvine), Junjie Shen (UC Irvine), Jalen Chuang (UC Irvine), Xin Xia (UCLA), Joshua Garcia (UC Irvine), Jiaqi Ma (UCLA) and Qi Alfred Chen (UC Irvine)

Read More