Xueluan Gong (Wuhan University), Yanjiao Chen (Zhejiang University), Jianshuo Dong (Wuhan University), Qian Wang (Wuhan University)

Deep neural networks have achieved remarkable success on a variety of mission-critical tasks. However, recent studies show that deep neural networks are vulnerable to backdoor attacks, where the attacker releases backdoored models that behave normally on benign samples but misclassify any trigger-imposed samples to a target label. Unlike adversarial examples, backdoor attacks manipulate both the inputs and the model, perturbing samples with the trigger and injecting backdoors into the model. In this paper, we propose a novel attention-based evasive backdoor attack, dubbed ATTEQ-NN. Different from existing works that arbitrarily set the trigger mask, we carefully design an attention-based trigger mask determination framework, which places the trigger at the crucial region with the most significant influence on the prediction results. To make the trigger-imposed samples appear more natural and imperceptible to human inspectors, we introduce a Quality-of-Experience (QoE) term into the loss function of trigger generation and carefully adjust the transparency of the trigger. During the process of iteratively optimizing the trigger generation and the backdoor injection components, we propose an alternating retraining strategy, which is shown to be effective in improving the clean data accuracy and evading some model-based defense approaches.

We evaluate ATTEQ-NN with extensive experiments on VGG- Flower, CIFAR-10, GTSRB, and CIFAR-100 datasets. The results show that ATTEQ-NN can increase the attack success rate by as high as 82% over baselines when the poison ratio is low while achieving a high QoE of the backdoored samples. We demonstrate that ATTEQ-NN reaches an attack success rate of more than 41.7% in the physical world under different lighting conditions and shooting angles. ATTEQ-NN preserves an attack success rate of more than 92.5% even if the original backdoored model is fine-tuned with clean data. Our user studies show that the backdoored samples generated by ATTEQ-NN are indiscernible under visual inspections. ATTEQ-NN is shown to be evasive to state-of-the-art defense methods, including model pruning, NAD, STRIP, NC, and MNTD.

View More Papers

Demo #2: Policy-based Discovery and Patching of Logic Bugs...

Hyungsub Kim (Purdue University), Muslum Ozgur Ozmen (Purdue University), Antonio Bianchi (Purdue University), Z. Berkay Celik (Purdue University) and Dongyan Xu (Purdue University)

Read More

PASS: A System-Driven Evaluation Platform for Autonomous Driving Safety...

Zhisheng Hu (Baidu Security), Junjie Shen (UC Irvine), Shengjian Guo (Baidu Security), Xinyang Zhang (Baidu Security), Zhenyu Zhong (Baidu Security), Qi Alfred Chen (UC Irvine) and Kang Li (Baidu Security)

Read More

PMTUD is not Panacea: Revisiting IP Fragmentation Attacks against...

Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Baojun Liu (Tsinghua University), Xiaofeng Zheng (Institute for Network Sciences and Cyberspace, Tsinghua University; QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.), Qiushi Yang (QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.), Haixin Duan…

Read More

DRAWN APART: A Device Identification Technique based on Remote...

Tomer Laor (Ben-Gurion Univ. of the Negev), Naif Mehanna (Univ. Lille, CNRS, Inria), Antonin Durey (Univ. Lille, CNRS, Inria), Vitaly Dyadyuk (Ben-Gurion Univ. of the Negev), Pierre Laperdrix (Univ. Lille, CNRS, Inria), Clémentine Maurice (Univ. Lille, CNRS, Inria), Yossi Oren (Ben-Gurion Univ. of the Negev), Romain Rouvoy (Univ. Lille, CNRS, Inria / IUF), Walter Rudametkin…

Read More