Gonzalo De La Torre Parra (University of the Incarnate Word, TX, USA), Luis Selvera (Secure AI and Autonomy Lab, The University of Texas at San Antonio, TX, USA), Joseph Khoury (The Cyber Center For Security and Analytics, University of Texas at San Antonio, TX, USA), Hector Irizarry (Raytheon, USA), Elias Bou-Harb (The Cyber Center For Security and Analytics, University of Texas at San Antonio, TX, USA), Paul Rad (Secure AI and Autonomy Lab, The University of Texas at San Antonio, TX, USA)

Threat detection and forensics have become an imperative objective for any digital forensic triage. Supervised approaches have been proposed for inferring system and network anomalies; including anomaly detection contributions using syslogs. Nevertheless, most works downplay the importance of the interpretability of a model's decision-making process. In this research, we are among the first to propose an interpretable federated transformer log learning model for threat detection supporting explainable cyber forensics. The proposed model is generated by training a local transformer-based threat detection model at each client in an organizational unit. Local models learn the system's normal behavior from the syslogs which keep records of execution flows. Subsequently, a federated learning server aggregates the learned model parameters from local models to generate a global federated learning model. Log time-series capturing normal behavior are expected to differ from those possessing cyber threat activity. We demonstrate this difference through a goodness of fit test based on Karl-Pearson's Chi-square statistic. To provide insights on actions triggering this difference, we integrate an attention-based interpretability module.

We implement and evaluate our proposed model using HDFS, a publicly available log dataset, and an in-house collected and publicly-released dataset named CTDD, which consists of more than 8 million syslogs representing cloud collaboration services and systems compromised by different classes of cyber threats. Moreover, through different experiments, we demonstrate the log agnostic capability and applicability of our approach on real-world operational settings such as edge computing systems. Our interpretability module manifests significant attention difference between normal and abnormal logs which provide insightful interpretability of the model's decision-making process. Finally, we deem the obtained results as a validation for the appropriate adoption of our approach in achieving threat forensics in the real world.

View More Papers

WIP: On Robustness of Lane Detection Models to Physical-World...

Takami Sato (UC Irvine) and Qi Alfred Chen (UC Irvine)

Read More

FakeGuard: Exploring Haptic Response to Mitigate the Vulnerability in...

Aditya Singh Rathore (University at Buffalo, SUNY), Yijie Shen (Zhejiang University), Chenhan Xu (University at Buffalo, SUNY), Jacob Snyderman (University at Buffalo, SUNY), Jinsong Han (Zhejiang University), Fan Zhang (Zhejiang University), Zhengxiong Li (University of Colorado Denver), Feng Lin (Zhejiang University), Wenyao Xu (University at Buffalo, SUNY), Kui Ren (Zhejiang University)

Read More

FANDEMIC: Firmware Attack Construction and Deployment on Power Management...

Ryan Tsang (University of California, Davis), Doreen Joseph (University of California, Davis), Qiushi Wu (University of California, Davis), Soheil Salehi (University of California, Davis), Nadir Carreon (University of Arizona), Prasant Mohapatra (University of California, Davis), Houman Homayoun (University of California, Davis)

Read More

NC-Max: Breaking the Security-Performance Tradeoff in Nakamoto Consensus

Ren Zhang (Nervos), Dingwei Zhang (Nervos), Quake Wang (Nervos), Shichen Wu (School of Cyber Science and Technology, Shandong University), Jan Xie (Nervos), Bart Preneel (imec-COSIC, KU Leuven)

Read More