Gonzalo De La Torre Parra (University of the Incarnate Word, TX, USA), Luis Selvera (Secure AI and Autonomy Lab, The University of Texas at San Antonio, TX, USA), Joseph Khoury (The Cyber Center For Security and Analytics, University of Texas at San Antonio, TX, USA), Hector Irizarry (Raytheon, USA), Elias Bou-Harb (The Cyber Center For Security and Analytics, University of Texas at San Antonio, TX, USA), Paul Rad (Secure AI and Autonomy Lab, The University of Texas at San Antonio, TX, USA)

Threat detection and forensics have become an imperative objective for any digital forensic triage. Supervised approaches have been proposed for inferring system and network anomalies; including anomaly detection contributions using syslogs. Nevertheless, most works downplay the importance of the interpretability of a model's decision-making process. In this research, we are among the first to propose an interpretable federated transformer log learning model for threat detection supporting explainable cyber forensics. The proposed model is generated by training a local transformer-based threat detection model at each client in an organizational unit. Local models learn the system's normal behavior from the syslogs which keep records of execution flows. Subsequently, a federated learning server aggregates the learned model parameters from local models to generate a global federated learning model. Log time-series capturing normal behavior are expected to differ from those possessing cyber threat activity. We demonstrate this difference through a goodness of fit test based on Karl-Pearson's Chi-square statistic. To provide insights on actions triggering this difference, we integrate an attention-based interpretability module.

We implement and evaluate our proposed model using HDFS, a publicly available log dataset, and an in-house collected and publicly-released dataset named CTDD, which consists of more than 8 million syslogs representing cloud collaboration services and systems compromised by different classes of cyber threats. Moreover, through different experiments, we demonstrate the log agnostic capability and applicability of our approach on real-world operational settings such as edge computing systems. Our interpretability module manifests significant attention difference between normal and abnormal logs which provide insightful interpretability of the model's decision-making process. Finally, we deem the obtained results as a validation for the appropriate adoption of our approach in achieving threat forensics in the real world.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 55 ) ) ) [post__not_in] => Array ( [0] => 8528 ) )

Log4shell: Redefining the Web Attack Surface

Douglas Everson (Clemson University), Long Cheng (Clemson University), and Zhenkai Zhang (Clemson University)

Read More

datAFLow: Towards a Data-Flow-Guided Fuzzer

Adrian Herrera (Australian National University), Mathias Payer (EPFL), Antony Hosking (Australian National University)

Read More

Preventing Kernel Hacks with HAKCs

Derrick McKee (Purdue University), Yianni Giannaris (MIT CSAIL), Carolina Ortega (MIT CSAIL), Howard Shrobe (MIT CSAIL), Mathias Payer (EPFL), Hamed Okhravi (MIT Lincoln Laboratory), Nathan Burow (MIT Lincoln Laboratory)

Read More

Testability Tarpits: the Impact of Code Patterns on the...

Feras Al Kassar (SAP Security Research), Giulia Clerici (SAP Security Research), Luca Compagna (SAP Security Research), Davide Balzarotti (EURECOM), Fabian Yamaguchi (ShiftLeft Inc)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)