Martin Schwarzl (Graz University of Technology), Erik Kraft (Graz University of Technology), Moritz Lipp (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Memory utilization can be reduced by merging identical memory blocks into copy-on-write mappings. Previous work showed that this so-called memory deduplication can be exploited in local attacks to break ASLR, spy on other programs, and determine the presence of data, i.e., website images. All these attacks exploit memory deduplication across security domains, which in turn was disabled. However, within a security domain or on an isolated system with no untrusted local access, memory deduplication is still not considered a security risk and was recently re-enabled on Windows by default.

In this paper, we present the first fully remote memory-deduplication attacks. Unlike previous attacks, our attacks require no local code execution. Consequently, we can disclose memory contents from a remote server merely by sending and timing HTTP/1 and HTTP/2 network requests. We demonstrate our attacks on deduplication both on Windows and Linux and attack widely used server software such as Memcached and InnoDB. Our side channel leaks up to 34.41B/h over the internet, making it faster than comparable remote memory-disclosure channels. We showcase our remote memory-deduplication attack in three case studies: First, we show that an attacker can disclose the presence of data in memory on a server running Memcached. We show that this information disclosure channel can also be used for fingerprinting and detect the correct libc version over the internet in 166.51s. Second, in combination with InnoDB, we present an information disclosure attack to leak MariaDB database records. Third, we demonstrate a fully remote KASLR break in less than 4 minutes allowing to derandomize the kernel image of a virtual machine over the Internet, i.e., 14 network hops away. We conclude that memory deduplication must also be considered a security risk if only applied within a single security domain.

View More Papers

Detecting Obfuscated Function Clones in Binaries using Machine Learning

Michael Pucher (University of Vienna), Christian Kudera (SBA Research), Georg Merzdovnik (SBA Research)

Read More

Demo: A Simulator for Cooperative and Automated Driving Security

Mohammed Lamine Bouchouia (Telecom Paris - Institut Polytechnique de Paris), Jean-Philippe Monteuuis (Qualcomm), Houda Labiod (Telecom Paris - Institut Polytechnique de Paris), Ons Jelassi, Wafa Ben Jaballah (Thales) and Jonathan Petit (Telecom Paris - Institut Polytechnique de Paris)

Read More

Hybrid Trust Multi-party Computation with Trusted Execution Environment

Pengfei Wu (School of Computing, National University of Singapore), Jianting Ning (College of Computer and Cyber Security, Fujian Normal University; Institute of Information Engineering, Chinese Academy of Sciences), Jiamin Shen (School of Computing, National University of Singapore), Hongbing Wang (School of Computing, National University of Singapore), Ee-Chien Chang (School of Computing, National University of Singapore)

Read More

Interpretable Federated Transformer Log Learning for Cloud Threat Forensics

Gonzalo De La Torre Parra (University of the Incarnate Word, TX, USA), Luis Selvera (Secure AI and Autonomy Lab, The University of Texas at San Antonio, TX, USA), Joseph Khoury (The Cyber Center For Security and Analytics, University of Texas at San Antonio, TX, USA), Hector Irizarry (Raytheon, USA), Elias Bou-Harb (The Cyber Center For…

Read More