Aditya Singh Rathore (University at Buffalo, SUNY), Yijie Shen (Zhejiang University), Chenhan Xu (University at Buffalo, SUNY), Jacob Snyderman (University at Buffalo, SUNY), Jinsong Han (Zhejiang University), Fan Zhang (Zhejiang University), Zhengxiong Li (University of Colorado Denver), Feng Lin (Zhejiang University), Wenyao Xu (University at Buffalo, SUNY), Kui Ren (Zhejiang University)

How to defend against presentation attacks via artificial fake fingers is a core challenge in fingerprint biometrics. The trade-off among security, usability, and production cost has driven researchers to reach a common standpoint, i.e., integrate the commercial fingerprint technology with anti-spoofing detection (e.g., ridge traits). These anti-spoofing solutions are perceived as sufficiently resilient under the assumption that a fake finger can never closely relate to a live finger due to either composition of spoofing materials or non-automated manufacturing errors. In this paper, we first identify the vulnerability of in-practice anti-spoofing solutions in commercial fingerprint products. Instead of using expensive 3D fake fingers (above USD $1000), we mimic a more realistic scenario where an attacker fabricates high-precision fake fingerprints using low-cost polyvinylacetate materials (less than USD $50). Building on this, we introduce a practical and secure countermeasure, namely FakeGuard, to overcome the exposed vulnerability. We examine the nature of 3D haptic response effect that arises when a fingertip epidermis interacts with a tactile surface and reflects the disparate anatomy of live and fake fingers. Unlike the previous mitigation strategies, FakeGuard offers both hardware and software compatibility with existing fingerprint scanners. As the first exploration of haptic-based anti-spoofing solution, we demonstrate the capability of FakeGuard to prevent known and unknown fake finger attacks with an average detection error of 1.4%. We also examine and prove FakeGuard resilience against seven different physical attacks, e.g., brute-force through pressure variations or partial fingerprints, haptic response alteration via advanced spoofing materials or side-channel interference, and denial-of-service attacks by manipulating the moisture, lighting, and temperature of the ambient environment.

View More Papers

PHYjacking: Physical Input Hijacking for Zero-Permission Authorization Attacks on...

Xianbo Wang (The Chinese University of Hong Kong), Shangcheng Shi (The Chinese University of Hong Kong), Yikang Chen (The Chinese University of Hong Kong), Wing Cheong Lau (The Chinese University of Hong Kong)

Read More

MobFuzz: Adaptive Multi-objective Optimization in Gray-box Fuzzing

Gen Zhang (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Tai Yue (National University of Defense Technology), Xiangdong Kong (National University of Defense Technology), Shan Huang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More

SpiralSpy: Exploring a Stealthy and Practical Covert Channel to...

Zhengxiong Li (University at Buffalo, SUNY), Baicheng Chen (University at Buffalo), Xingyu Chen (University at Buffalo), Huining Li (SUNY University at Buffalo), Chenhan Xu (University at Buffalo, SUNY), Feng Lin (Zhejiang University), Chris Xiaoxuan Lu (University of Edinburgh), Kui Ren (Zhejiang University), Wenyao Xu (SUNY Buffalo)

Read More

Characterizing the Adoption of Security.txt Files and their Applications...

William Findlay (Carleton University) and AbdelRahman Abdou (Carleton University)

Read More