Sizhuang Liang (Georgia Institute of Technology), Saman Zonouz (Rutgers University), Raheem Beyah (Georgia Institute of Technology)

We propose an optical side-channel attack to recover intellectual property in Additive Manufacturing (AM) systems. Specifically, we use a deep neural network to estimate the coordinates of the printhead as a function of time by analyzing the video of the printer frame by frame. We found that the deep neural network can successfully recover the path for an arbitrary printing process. By using data augmentation, the neural network can tolerate a certain level of variation in the position and angle of the camera as well as the lighting conditions. The neural network can intelligently perform interpolation and accurately recover the coordinates of an image that is not seen in the training dataset.

To defend against the optical side-channel attack, we propose to use the optical noise injection method. Specifically, we use an optical projector to artificially inject carefully crafted optical noise onto the printing area in an attempt to confuse the attacker and make it harder to recover the printing path. We found that existing noise generation algorithms, such as replaying, random blobs, white noise, and full power, can effortlessly defeat a naive attacker who is not aware of the existence of the injected noise. However, an advanced attacker who knows about the injected noise and incorporates images with injected noise in the training dataset can defeat all of the existing noise generation algorithms. To defend against such an advanced attacker, we propose three novel noise generation algorithms: channel uniformization, state uniformization, and state randomization. Our experiment results show that noise generated via state randomization can successfully defend against the advanced attacker.

View More Papers

MIRROR: Model Inversion for Deep Learning Network with High...

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University), Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More

Building Embedded Systems Like It’s 1996

Ruotong Yu (Stevens Institute of Technology, University of Utah), Francesca Del Nin (University of Padua), Yuchen Zhang (Stevens Institute of Technology), Shan Huang (Stevens Institute of Technology), Pallavi Kaliyar (Norwegian University of Science and Technology), Sarah Zakto (Cyber Independent Testing Lab), Mauro Conti (University of Padua, Delft University of Technology), Georgios Portokalidis (Stevens Institute of…

Read More

Too Afraid to Drive: Systematic Discovery of Semantic DoS...

Ziwen Wan (University of California, Irvine), Junjie Shen (University of California, Irvine), Jalen Chuang (University of California, Irvine), Xin Xia (The University of California, Los Angeles), Joshua Garcia (University of California, Irvine), Jiaqi Ma (The University of California, Los Angeles), Qi Alfred Chen (University of California, Irvine)

Read More

Chunked-Cache: On-Demand and Scalable Cache Isolation for Security Architectures

Ghada Dessouky (Technical University of Darmstadt), Emmanuel Stapf (Technical University of Darmstadt), Pouya Mahmoody (Technical University of Darmstadt), Alexander Gruler (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More