Mohammad Naseri (University College London), Jamie Hayes (DeepMind), Emiliano De Cristofaro (University College London & Alan Turing Institute)

Federated Learning (FL) allows multiple participants to train machine learning models collaboratively by keeping their datasets local while only exchanging model updates. Alas, this is not necessarily free from privacy and robustness vulnerabilities, e.g., via membership, property, and backdoor attacks. This paper investigates whether and to what extent one can use differential Privacy (DP) to protect both privacy and robustness in FL. To this end, we present a first-of-its-kind evaluation of Local and Central Differential Privacy (LDP/CDP) techniques in FL, assessing their feasibility and effectiveness.

Our experiments show that both DP variants do defend against backdoor attacks, albeit with varying levels of protection-utility trade-offs, but anyway more effectively than other robustness defenses. DP also mitigates white-box membership inference attacks in FL, and our work is the first to show it empirically. Neither LDP nor CDP, however, defend against property inference. Overall, our work provides a comprehensive, re-usable measurement methodology to quantify the trade-offs between robustness/privacy and utility in differentially private FL.

View More Papers

datAFLow: Towards a Data-Flow-Guided Fuzzer

Adrian Herrera (Australian National University), Mathias Payer (EPFL), Antony Hosking (Australian National University)

Read More

Packet-Level Open-World App Fingerprinting on Wireless Traffic

Jianfeng Li (The Hong Kong Polytechnic University), Shuohan Wu (The Hong Kong Polytechnic University), Hao Zhou (The Hong Kong Polytechnic University), Xiapu Luo (The Hong Kong Polytechnic University), Ting Wang (Penn State), Yangyang Liu (The Hong Kong Polytechnic University), Xiaobo Ma (Xi'an Jiaotong University)

Read More

All things Binary

Dr. Sergey Bratus, DARPA PI and Research Associate Professor at Dartmouth College

Read More

V-Range: Enabling Secure Ranging in 5G Wireless Networks

Mridula Singh (CISPA - Helmholtz Center for Information Security), Marc Roeschlin (ETH Zurich), Aanjhan Ranganathan (Northeastern University), Srdjan Capkun (ETH Zurich)

Read More