Gen Zhang (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Tai Yue (National University of Defense Technology), Xiangdong Kong (National University of Defense Technology), Shan Huang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Coverage-guided gray-box fuzzing (CGF) is an efficient software testing technique. There are usually multiple objectives to optimize in CGF. However, existing CGF methods cannot successfully find the optimal values for multiple objectives simultaneously. In this paper, we propose a gray-box fuzzer for multi-objective optimization (MOO) called MobFuzz. We model the multi-objective optimization process as a multi-player multi-armed bandit (MPMAB). First, it adaptively selects the objective combination that contains the most appropriate objectives for the current situation. Second, our model deals with the power schedule, which adaptively allocates energy to the seeds under the chosen objective combination. In MobFuzz, we propose an evolutionary algorithm called NIC to optimize our chosen objectives simultaneously without incurring additional performance overhead. To prove the effectiveness of MobFuzz, we conduct experiments on 12 real-world programs and the MAGMA data set. Experiment results show that multi-objective optimization in MobFuzz outperforms single-objective fuzzing in the baseline fuzzers. In contrast to them, MobFuzz can select the optimal objective combination and increase the values of multiple objectives up to 107%, with at most a 55% reduction in the energy consumption. Moreover, MobFuzz has up to 6% more program coverage and finds 3x more unique bugs than the baseline fuzzers. The NIC algorithm has at least a 2x improvement with a performance overhead of approximately 3%.

View More Papers

Building Embedded Systems Like It’s 1996

Ruotong Yu (Stevens Institute of Technology, University of Utah), Francesca Del Nin (University of Padua), Yuchen Zhang (Stevens Institute of Technology), Shan Huang (Stevens Institute of Technology), Pallavi Kaliyar (Norwegian University of Science and Technology), Sarah Zakto (Cyber Independent Testing Lab), Mauro Conti (University of Padua, Delft University of Technology), Georgios Portokalidis (Stevens Institute of…

Read More

Demo #2: Policy-based Discovery and Patching of Logic Bugs...

Hyungsub Kim (Purdue University), Muslum Ozgur Ozmen (Purdue University), Antonio Bianchi (Purdue University), Z. Berkay Celik (Purdue University) and Dongyan Xu (Purdue University)

Read More

Demo #1: Security of Multi-Sensor Fusion based Perception in...

Yulong Cao (University of Michigan), Ningfei Wang (UC, Irvine), Chaowei Xiao (Arizona State University), Dawei Yang (University of Michigan), Jin Fang (Baidu Research), Ruigang Yang (University of Michigan), Qi Alfred Chen (UC, Irvine), Mingyan Liu (University of Michigan) and Bo Li (University of Illinois at Urbana-Champaign)

Read More

VISAS-Detecting GPS spoofing attacks against drones by analyzing camera's...

Barak Davidovich (Ben-Gurion University of the Negev), Ben Nassi (Ben-Gurion University of the Negev) and Yuval Elovici (Ben-Gurion University of the Negev)

Read More