Ege Tekiner (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University)

Recently, cryptojacking malware has become an easy way of reaching and profiting from a large number of victims. Prior works studied the cryptojacking detection systems focusing on both in-browser and host-based cryptojacking malware. However, none of these earlier works investigated different attack configurations and network settings in this context. For example, an attacker with an aggressive profit strategy may increase computational resources to the maximum utilization to benefit more in a short time, while a stealthy attacker may want to stay undetected longer time on the victim's device. The accuracy of the detection mechanism may differ for an aggressive and stealthy attacker. Not only profit strategies but also the cryptojacking malware type, the victim's device as well as various network settings where the network is fully or partially compromised may play a key role in the performance evaluation of the detection mechanisms. In addition, smart home networks with multiple IoT devices are easily exploited by the attackers, and they are equipped to mine cryptocurrency on behalf of the attacker. However, no prior works investigated the impact of cryptojacking malware on IoT devices and compromised smart home networks. In this paper, we first propose an accurate and efficient IoT cryptojacking detection mechanism based on network traffic features, which can detect both in-browser and host-based cryptojacking. Then, we focus on the cryptojacking implementation problem on new device categories (e.g., IoT) and designed several novel experiment scenarios to assess our detection mechanism to cover the current attack surface of the attackers. Particularly, we tested our mechanism in various attack configurations and network settings. For this, we used a dataset of network traces consisting of 6.4M network packets and showed that our detection algorithm can obtain accuracy as high as 99% with only one hour of training data. To the best of our knowledge, this work is the first study focusing on IoT cryptojacking and the first study analyzing various attacker behaviors and network settings in the area of cryptojacking detection.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 55 ) ) ) [post__not_in] => Array ( [0] => 8484 ) )

Reflections on Artifact Evaluation

Dr. Eric Eide (University of Utah)

Read More

PickMail: A Serious Game for Email Phishing Awareness Training

Gokul CJ (TCS Research, Tata Consultancy Services Ltd., Pune), Vijayanand Banahatti (TCS Research, Tata Consultancy Services Ltd., Pune), Sachin Lodha (TCS Research, Tata Consultancy Services Ltd., Pune)

Read More

Building Embedded Systems Like It’s 1996

Ruotong Yu (Stevens Institute of Technology, University of Utah), Francesca Del Nin (University of Padua), Yuchen Zhang (Stevens Institute of Technology), Shan Huang (Stevens Institute of Technology), Pallavi Kaliyar (Norwegian University of Science and Technology), Sarah Zakto (Cyber Independent Testing Lab), Mauro Conti (University of Padua, Delft University of Technology), Georgios Portokalidis (Stevens Institute of…

Read More

Let’s Authenticate: Automated Certificates for User Authentication

James Conners (Brigham Young University), Corey Devenport (Brigham Young University), Stephen Derbidge (Brigham Young University), Natalie Farnsworth (Brigham Young University), Kyler Gates (Brigham Young University), Stephen Lambert (Brigham Young University), Christopher McClain (Brigham Young University), Parker Nichols (Brigham Young University), Daniel Zappala (Brigham Young University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)