Roland Meier (ETH Zürich), Vincent Lenders (armasuisse), Laurent Vanbever (ETH Zürich)

Many large organizations operate dedicated wide area networks (WANs) distinct from the Internet to connect their data centers and remote sites through high-throughput links. While encryption generally protects these WANs well against content eavesdropping, they remain vulnerable to traffic analysis attacks that infer visited websites, watched videos or contents of VoIP calls from analysis of the traffic volume, packet sizes or timing information. Existing techniques to obfuscate Internet traffic are not well suited for WANs as they are either highly inefficient or require modifications to the communication protocols used by end hosts.

This paper presents ditto, a traffic obfuscation system adapted to the requirements of WANs: achieving high-throughput traffic obfuscation at line rate without modifications of end hosts. ditto adds padding to packets and introduces chaff packets to make the resulting obfuscated traffic independent of production traffic with respect to packet sizes, timing and traffic volume.

We evaluate a full implementation of ditto running on programmable switches in the network data plane. Our results show that ditto runs at 100 Gbps line rate and performs with negligible performance overhead up to a realistic traffic load of 70 Gbps per WAN link.

View More Papers

EMS: History-Driven Mutation for Coverage-based Fuzzing

Chenyang Lyu (Zhejiang University), Shouling Ji (Zhejiang University), Xuhong Zhang (Zhejiang University & Zhejiang University NGICS Platform), Hong Liang (Zhejiang University), Binbin Zhao (Georgia Institute of Technology), Kangjie Lu (University of Minnesota), Raheem Beyah (Georgia Institute of Technology)

Read More

Demo #4: Recovering Autonomous Robotic Vehicles from Physical Attacks

Pritam Dash (University of British Columbia) and Karthik Pattabiraman (University of British Columbia)

Read More

Chunked-Cache: On-Demand and Scalable Cache Isolation for Security Architectures

Ghada Dessouky (Technical University of Darmstadt), Emmanuel Stapf (Technical University of Darmstadt), Pouya Mahmoody (Technical University of Darmstadt), Alexander Gruler (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Demo #2: Policy-based Discovery and Patching of Logic Bugs...

Hyungsub Kim (Purdue University), Muslum Ozgur Ozmen (Purdue University), Antonio Bianchi (Purdue University), Z. Berkay Celik (Purdue University) and Dongyan Xu (Purdue University)

Read More