Roland Meier (ETH Zürich), Vincent Lenders (armasuisse), Laurent Vanbever (ETH Zürich)

Many large organizations operate dedicated wide area networks (WANs) distinct from the Internet to connect their data centers and remote sites through high-throughput links. While encryption generally protects these WANs well against content eavesdropping, they remain vulnerable to traffic analysis attacks that infer visited websites, watched videos or contents of VoIP calls from analysis of the traffic volume, packet sizes or timing information. Existing techniques to obfuscate Internet traffic are not well suited for WANs as they are either highly inefficient or require modifications to the communication protocols used by end hosts.

This paper presents ditto, a traffic obfuscation system adapted to the requirements of WANs: achieving high-throughput traffic obfuscation at line rate without modifications of end hosts. ditto adds padding to packets and introduces chaff packets to make the resulting obfuscated traffic independent of production traffic with respect to packet sizes, timing and traffic volume.

We evaluate a full implementation of ditto running on programmable switches in the network data plane. Our results show that ditto runs at 100 Gbps line rate and performs with negligible performance overhead up to a realistic traffic load of 70 Gbps per WAN link.

View More Papers

FakeGuard: Exploring Haptic Response to Mitigate the Vulnerability in...

Aditya Singh Rathore (University at Buffalo, SUNY), Yijie Shen (Zhejiang University), Chenhan Xu (University at Buffalo, SUNY), Jacob Snyderman (University at Buffalo, SUNY), Jinsong Han (Zhejiang University), Fan Zhang (Zhejiang University), Zhengxiong Li (University of Colorado Denver), Feng Lin (Zhejiang University), Wenyao Xu (University at Buffalo, SUNY), Kui Ren (Zhejiang University)

Read More

Chhoyhopper: A Moving Target Defense with IPv6

A S M Rizvi (University of Southern California/Information Sciences Institute) and John Heidemann (University of Southern California/Information Sciences Institute)

Read More

30 Years into Scientific Binary Decompilation: What We Have...

Dr. Ruoyu (Fish) Wang, Assistant Professor at Arizona State University

Read More

An In-depth Analysis of Duplicated Linux Kernel Bug Reports

Dongliang Mu (Huazhong University of Science and Technology), Yuhang Wu (Pennsylvania State University), Yueqi Chen (Pennsylvania State University), Zhenpeng Lin (Pennsylvania State University), Chensheng Yu (George Washington University), Xinyu Xing (Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign)

Read More