Muhammad Adil Inam (University of Illinois at Urbana-Champaign), Wajih Ul Hassan (University of Illinois at Urbana-Champaign), Ali Ahad (University of Virginia), Adam Bates (University of Illinois at Urbana-Champaign), Rashid Tahir (University of Prince Mugrin), Tianyin Xu (University of Illinois at Urbana-Champaign), Fareed Zaffar (LUMS)

Causality analysis is an effective technique for investigating and detecting cyber attacks. However, by focusing on auditing at the Operating System level, existing causal analysis techniques lack visibility into important application-level semantics, such as configuration changes that control application runtime behavior. This leads to incorrect attack attribution and half-baked tracebacks.

In this work, we propose Dossier, a specialized provenance tracker that enhances the visibility of the Linux auditing infrastructure. By providing additional hooks into the system, Dossier can generate a holistic view of the target application’s event history and causal chains, particularly those pertaining to configuration changes that are among the most common attack vectors observed in the real world. The extra “vantage points” in Dossier enable forensic investigators to bridge the semantic gap and correctly piece together attack fragments. Dossier leverages the versatility of information flow tracking and system call introspection to track all configuration changes, including both dynamic modifications that are applied directly to configuration-related program variables in memory and revisions to configuration files on disk with negligible runtime overhead (less than 7%). Evaluation on realistic workloads and real-world attack scenarios shows that Dossier can effectively reason about configuration-based attacks and accurately reconstruct the whole attack stories.

View More Papers

EqualNet: A Secure and Practical Defense for Long-term Network...

Jinwoo Kim (KAIST), Eduard Marin (Telefonica Research (Spain)), Mauro Conti (University of Padua), Seungwon Shin (KAIST)

Read More

Get a Model! Model Hijacking Attack Against Machine Learning...

Ahmed Salem (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security)

Read More

Demo #11: Understanding the Effects of Paint Colors on...

Shaik Sabiha (University at Buffalo), Keyan Guo (University at Buffalo), Foad Hajiaghajani (University at Buffalo), Chunming Qiao (University at Buffalo), Hongxin Hu (University at Buffalo) and Ziming Zhao (University at Buffalo)

Read More

FANDEMIC: Firmware Attack Construction and Deployment on Power Management...

Ryan Tsang (University of California, Davis), Doreen Joseph (University of California, Davis), Qiushi Wu (University of California, Davis), Soheil Salehi (University of California, Davis), Nadir Carreon (University of Arizona), Prasant Mohapatra (University of California, Davis), Houman Homayoun (University of California, Davis)

Read More