Zhenxiao Qi (UC Riverside), Yu Qu (UC Riverside), Heng Yin (UC Riverside)

Memory forensic tools rely on the knowledge of kernel symbols and kernel object layouts to retrieve digital evidence and artifacts from memory dumps. This knowledge is called profile. Existing solutions for profile generation are either inconvenient or inaccurate. In this paper, we propose a logic inference approach to automatically generating a profile directly from a memory dump. It leverages the invariants existing in kernel data structures across all kernel versions and configurations to precisely locate forensics-required fields in kernel objects. We have implemented a prototype named LOGICMEM and evaluated it on memory dumps collected from mainstream Linux distributions, customized Linux kernels with random configurations, and operating systems designed for Android smartphones and embedded devices. The evaluation results show that the proposed logic inference approach is well-suited for locating forensics-required fields and achieves 100% precision and recall for mainstream Linux distributions and 100% precision and 95% recall for customized kernels with random configurations. Moreover, we show that false negatives can be eliminated with improved logic rules. We also demonstrate that LOGICMEM can generate profiles when it is otherwise difficult (if not impossible) for existing approaches, and support memory forensics tasks such as rootkit detection.

View More Papers

Fuzzing: A Tale of Two Cultures

Andreas Zeller (CISPA Helmholtz Center for Information Security)

Read More

Forensic Analysis of Configuration-based Attacks

Muhammad Adil Inam (University of Illinois at Urbana-Champaign), Wajih Ul Hassan (University of Illinois at Urbana-Champaign), Ali Ahad (University of Virginia), Adam Bates (University of Illinois at Urbana-Champaign), Rashid Tahir (University of Prince Mugrin), Tianyin Xu (University of Illinois at Urbana-Champaign), Fareed Zaffar (LUMS)

Read More

Demo #14: In-Vehicle Communication Using Named Data Networking

Zachariah Threet (Tennessee Tech), Christos Papadopoulos (University of Memphis), Proyash Poddar (Florida International University), Alex Afanasyev (Florida International University), William Lambert (Tennessee Tech), Haley Burnell (Tennessee Tech), Sheikh Ghafoor (Tennessee Tech) and Susmit Shannigrahi (Tennessee Tech)

Read More

FedCRI: Federated Mobile Cyber-Risk Intelligence

Hossein Fereidooni (Technical University of Darmstadt), Alexandra Dmitrienko (University of Wuerzburg), Phillip Rieger (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt), Felix Madlener (KOBIL)

Read More