Leonardo Babun (Florida International University), Amit Kumar Sikder (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University)

In smart environments such as smart homes and offices, the interaction between devices, users, and apps generate abundant data. Such data contain valuable forensic information about events and activities occurring in the smart environment. Nonetheless, current smart platforms do not provide any digital forensic capability to identify, trace, store, and analyze the data produced in these environments. To fill this gap, in this paper, we introduce VeritaS, a novel and practical digital forensic capability for the smart environment. VeritaS has two main components: Collector and Analyzer. The Collector implements mechanisms to automatically collect forensically-relevant data from the smart environment. Then, in the event of a forensic investigation, the Analyzer uses a First Order Markov Chain model to extract valuable and usable forensic information from the collected data. VeritaS then uses the forensic information to infer activities and behaviors from users, devices, and apps that violate the security policies defined for the environment. We implemented and tested VeritaS in a realistic smart office environment with 22 smart devices and sensors that generated 84209 forensically-valuable incidents. The evaluation shows that VeritaS achieves over 95% of accuracy in inferring different anomalous activities and forensic behaviors within the smart environment. Finally, VeritaS is extremely lightweight, yielding no overhead on the devices and minimal overhead in the backend resources (i.e., the cloud servers).

View More Papers

VISAS-Detecting GPS spoofing attacks against drones by analyzing camera's...

Barak Davidovich (Ben-Gurion University of the Negev), Ben Nassi (Ben-Gurion University of the Negev) and Yuval Elovici (Ben-Gurion University of the Negev)

Read More

Context-Sensitive and Directional Concurrency Fuzzing for Data-Race Detection

Zu-Ming Jiang (Tsinghua University), Jia-Ju Bai (Tsinghua University), Kangjie Lu (University of Minnesota), Shi-Min Hu (Tsinghua University)

Read More

Probe the Proto: Measuring Client-Side Prototype Pollution Vulnerabilities of...

Zifeng Kang (Johns Hopkins University), Song Li (Johns Hopkins University), Yinzhi Cao (Johns Hopkins University)

Read More

Speeding Dumbo: Pushing Asynchronous BFT Closer to Practice

Bingyong Guo (Institute of Software, Chinese Academy of Sciences), Yuan Lu (Institute of Software Chinese Academy of Sciences), Zhenliang Lu (The University of Sydney), Qiang Tang (The University of Sydney), jing xu (Institute of Software, Chinese Academy of Sciences), Zhenfeng Zhang (Institute of Software, Chinese Academy of Sciences)

Read More