Xianbo Wang (The Chinese University of Hong Kong), Shangcheng Shi (The Chinese University of Hong Kong), Yikang Chen (The Chinese University of Hong Kong), Wing Cheong Lau (The Chinese University of Hong Kong)

Nowadays, most mobile devices are equipped with various hardware interfaces such as touchscreen, fingerprint scanner, camera and microphone to capture inputs from the user.
Many mobile apps use these physical interfaces to receive user-input for authentication/authorization operations including one-click login, fingerprint-based payment approval, and face/voice unlocking.
In this paper, we investigate the so-called PHYjacking attack where a victim is misled by a zero-permission malicious app to feed physical inputs to different hardware interfaces on a mobile device to result in unintended authorization.
We analyze the protection mechanisms in Android for different types of physical input interfaces and introduce new techniques to bypass them.
Specifically, we identify weaknesses in the existing protection schemes for the related system APIs and observe common pitfalls when apps implement physical-input-based authorization.
Worse still, we discover a race-condition bug in Android that can be exploited even when app-based mitigations are properly implemented.
Based on these findings, we introduce fingerprint-jacking and facejacking techniques and demonstrate their impact on real apps.
We also discuss the feasibility of launching similar attacks against NFC and microphone inputs, as well as effective tapjacking attacks against Single Sign-On apps.
We have designed a static analyzer to examine 3000+ real-world apps and find 44% of them contain PHYjacking-related implementation flaws.
We demonstrate the practicality and potential impact of PHYjacking via proof-of-concept implementations which enable unauthorized money transfer on a payment app with over 800 million users, user-privacy leak from a social media app with over 400 million users and escalating app permissions in Android 11.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 55 ) ) ) [post__not_in] => Array ( [0] => 8474 ) )

30 Years into Scientific Binary Decompilation: What We Have...

Dr. Ruoyu (Fish) Wang, Assistant Professor at Arizona State University

Read More

DRAWN APART: A Device Identification Technique based on Remote...

Tomer Laor (Ben-Gurion Univ. of the Negev), Naif Mehanna (Univ. Lille, CNRS, Inria), Antonin Durey (Univ. Lille, CNRS, Inria), Vitaly Dyadyuk (Ben-Gurion Univ. of the Negev), Pierre Laperdrix (Univ. Lille, CNRS, Inria), Clémentine Maurice (Univ. Lille, CNRS, Inria), Yossi Oren (Ben-Gurion Univ. of the Negev), Romain Rouvoy (Univ. Lille, CNRS, Inria / IUF), Walter Rudametkin…

Read More

Problematic Content in Online Ads

Franzisca Roesner (University of Washington)

Read More

ATTEQ-NN: Attention-based QoE-aware Evasive Backdoor Attacks

Xueluan Gong (Wuhan University), Yanjiao Chen (Zhejiang University), Jianshuo Dong (Wuhan University), Qian Wang (Wuhan University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)