Shujaat Mirza, Christina Pöpper (New York University)

Online social networks accumulate unprecedented amounts of data that continue to exist on user profiles long after the time of posting. Given that these platforms primarily provide a venue for people to connect and foster online friendships, the influence and the risks associated with longitudinal data may impact users and their reasons for using these platforms. To better understand these issues, we conducted two user studies of Facebook users analyzing the history of past postings w. r. t. to their perceived relevance, longitudinal exposure, and impact on the users’ befriending behavior. The studies give us a cross-cultural undergraduate student sample (n=89, campus study) and a Mechanical Turk sample of two cultural backgrounds from the US and India (n=209, MTurk study). Our findings reveal that a sizable group of participants consider their past postings irrelevant and, at times, embarrassing. However, participants’ awareness and usage of longitudinal privacy control features (e. g., Limit Past Posts) are limited, resulting in overexposure of their past postings and personal information. Importantly, we find support that these overexposed, yet irrelevant, past postings (of both participants and friend requesters) have the potential to influence users’ fundamental behavior on the platform: friend network expansion. Participants greatly valued friend requester’s past postings, particularly in the absence of prior personal interactions, but are influenced by their backgrounds (American users rely significantly more than their Indian counterparts on the requesters’ past postings for their befriending behavior). We close by discussing the implications of our findings on the future of longitudinal privacy controls.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 47 [1] => 32 ) ) ) [post__not_in] => Array ( [0] => 7670 ) )

Scenario-Driven Assessment of Cyber Risk Perception at the Security...

Simon Parkin (TU Delft), Kristen Kuhn, Siraj Ahmed Shaikh (Coventry University)

Read More

MINOS: A Lightweight Real-Time Cryptojacking Detection System

Faraz Naseem (Florida International University), Ahmet Aris (Florida International University), Leonardo Babun (Florida International University), Ege Tekiner (Florida International University), A. Selcuk Uluagac (Florida International University)

Read More

Hashomer – Privacy-Preserving Bluetooth Based Contact Tracing Scheme for...

Benny Pinkas (Bar-Ilan University); Eyal Ronen (Tel Aviv University)

Read More

WINNIE : Fuzzing Windows Applications with Harness Synthesis and...

Jinho Jung (Georgia Institute of Technology), Stephen Tong (Georgia Institute of Technology), Hong Hu (Pennsylvania State University), Jungwon Lim (Georgia Institute of Technology), Yonghwi Jin (Georgia Institute of Technology), Taesoo Kim (Georgia Institute of Technology)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)